Academia.eduAcademia.edu

Outline

Potential applications of antioxidants -A Review

Abstract

Antioxidants have attracted biomedical researchers due to the importance of this chemicals in preventing free radicals from causing biological cell damage which might cause cancer. Antioxidants biomedical compounds represent one of the most potential Martials that could be used to heal illness such as cancer. This short review will try to cover antioxidants enzymes types and its resource. Additionally, this review will explain briefly the uses of antioxidants in food preservative and industry which shows how important of these compounds in human been life.

Key takeaways
sparkles

AI

  1. Antioxidants prevent biological cell damage caused by free radicals, potentially reducing cancer risk.
  2. Antioxidants are divided into hydrophilic and hydrophobic types based on solubility.
  3. Key antioxidant enzymes include catalase, glutathione, and superoxide dismutase (SOD).
  4. Antioxidants serve crucial roles in food preservation and various industrial applications.
  5. This review aims to provide insights into antioxidant enzyme types and their resources for future research.

References (25)

  1. Diplock AT, Charleux JL, Crozier-Willi G, et al. Functional food science and defence against reactive oxygen species. British Journal of Nutrition 1998; 80(Suppl 1):S77-S112.
  2. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology 2007; 39(1):44-84.
  3. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495: 12- 15.
  4. Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (Jul 2006). "Involvement of oxidative stress in Alzheimer disease". Journal of Neuropathology and Experimental Neurology. 65 (7): 631-41.
  5. Wood-Kaczmar A, Gandhi S, Wood NW (Nov 2006). "Understanding the molecular causes of Parkinson's disease". Trends in Molecular Medicine. 12 (11): 521-8.
  6. Davì G, Falco A, Patrono C (2005). "Lipid peroxidation in diabetes mellitus". Antioxidants & Redox Signaling. 7 (1-2): 256-68.
  7. Khan MA, Tania M, Zhang D, Chen H (2010). "Antioxidant enzymes and cancer". Chin J Cancer Res. 22 (2): 87-92.
  8. Bouayed J, Bohn T. Exogenous antioxidants-double-edged swords in cellular redoc state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity 2010; 3(4): 228-237.
  9. Chelikani P, Fita I, Loewen PC (January 2004). "Diversity of structures and properties among catalases". Cellular and Molecular Life Sciences. 61 (2): 192-208.
  10. Boon EM, Downs A, Marcey D. "Catalase: H2O2: H2O2 Oxidoreductase". Catalase Structural Tutorial Text. Retrieved 2007-02-11.
  11. "Catalase". Worthington Enzyme Manual. Worthington Biochemical Corporation. Retrieved 2009-03-01.
  12. Hengge A (1999). "Re: how is catalase used in industry?". General Biology. MadSci Network. Retrieved 2009-03-01.
  13. "textile industry". Case study 228. International Cleaner Production Information Clearinghouse. Retrieved 2009-03-01.
  14. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (October 2003). "The changing faces of glutathione, a cellular protagonist". Biochemical Pharmacology. 66 (8): 1499-503.
  15. Couto N, Malys N, Gaskell SJ, Barber J (June 2013). "Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach". Journal of Proteome Research. 12 (6): 2885-94.
  16. Lu SC (May 2013). "Glutathione synthesis". Biochimica et Biophysica Acta. 1830 (5): 3143-53.
  17. Grant CM (2001). "Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions". Molecular Microbiology. 39 (3): 533-41.
  18. Dringen R (December 2000). "Metabolism and functions of glutathione in brain". Progress in Neurobiology. 62 (6): 649-71.
  19. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (June 1999). "Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe". The Plant Cell. 11 (6): 1153-64.
  20. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983). "Structure and mechanism of copper, zinc superoxide dismutase". Nature. 306 (5940): 284-7.
  21. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA (Oct 1992). "The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles". Cell. 71 (1): 107-18.
  22. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (Jun 2004). "Nickel superoxide dismutase structure and mechanism". Biochemistry. 43 (25): 8038-47.
  23. Halliwell B (2000) The antioxidant paradox. Lancet 355: 1179- 1180.
  24. Iverson F (Jun 1995). "Phenolic antioxidants: Health Protection Branch studies on butylated hydroxyanisole". Cancer Letters. 93 (1): 49-54.
  25. Boozer CE, Hammond GS, Hamilton CE, Sen JN (1955). "Air Oxidation of Hydrocarbons.1II. The Stoichiometry and Fate of Inhibitors in Benzene and Chlorobenzene". Journal of the American Chemical Society. 77 (12): 3233-7.