Academia.eduAcademia.edu

Outline

Generative Deep Neural Networks for Dialogue: A Short Review

https://doi.org/10.48550/ARXIV.1611.06216

Abstract

Researchers have recently started investigating deep neural networks for dialogue applications. In particular, generative sequence-to-sequence (Seq2Seq) models have shown promising results for unstructured tasks, such as word-level dialogue response generation. The hope is that such models will be able to leverage massive amounts of data to learn meaningful natural language representations and response generation strategies, while requiring a minimum amount of domain knowledge and hand-crafting. An important challenge is to develop models that can effectively incorporate dialogue context and generate meaningful and diverse responses. In support of this goal, we review recently proposed models based on generative encoder-decoder neural network architectures, and show that these models have better ability to incorporate long-term dialogue history, to model uncertainty and ambiguity in dialogue, and to generate responses with high-level compositional structure.

References (25)

  1. A. Bordes and J. Weston. Learning end-to-end goal-oriented dialog. arXiv preprint arXiv:1605.07683, 2016.
  2. A. L. Gorin, G. Riccardi, and J. H. Wright. How may i help you? Speech communication, 23(1):113-127, 1997.
  3. M. Henderson, B. Thomson, and S. Young. Deep neural network approach for the dialog state tracking challenge. In Proceedings of the SIGDIAL 2013 Conference, pages 467-471, 2013.
  4. M. Inaba and K. Takahashi. Neural utterance ranking model for conversational dialogue systems. In 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 393, 2016.
  5. A. Kannan, K. Kurach, S. Ravi, T. Kaufmann, A. Tomkins, B. Miklos, G. Corrado, L. Lukács, M. Ganea, P. Young, et al. Smart reply: Automated response suggestion for email. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), volume 36, pages 495-503, 2016.
  6. J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for neural conversation models. In NAACL, 2016a.
  7. J. Li, W. Monroe, A. Ritter, and D. Jurafsky. Deep reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016b.
  8. R. Lowe, N. Pow, I. Serban, and J. Pineau. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems. In Proc. of SIGDIAL-2015, 2015.
  9. J. Markoff and P. Mozur. For sympathetic ear, more chinese turn to smartphone program. NY Times, 2015.
  10. N. Mrkšić, D. O. Séaghdha, B. Thomson, M. Gašić, P.-H. Su, D. Vandyke, T.-H. Wen, and S. Young. Multi- domain dialog state tracking using recurrent neural networks. In HLT-NAACL, pages 120-129, 2015.
  11. A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response generation in social media. In EMNLP, 2011.
  12. I. V. Serban, T. Klinger, G. Tesauro, K. Talamadupula, B. Zhou, Y. Bengio, and A. Courville. Multiresolution recurrent neural networks: An application to dialogue response generation. arXiv preprint arXiv:1606.00776, 2016a.
  13. I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building end-to-end dialogue systems using generative hierarchical neural network models. In AAAI, pages 3776-3784, 2016b.
  14. I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues. arXiv preprint arXiv:1605.06069, 2016c.
  15. L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text conversation. In ACL-IJCNLP, pages 1577-1586, 2015.
  16. S. Singh, D. Litman, M. Kearns, and M. Walker. Optimizing dialogue management with reinforcement learning: Experiments with the njfun system. JAIR, 16:105-133, 2002.
  17. A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan. A neural network approach to context-sensitive generation of conversational responses. In Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT 2015), 2015.
  18. P.-H. Su, D. Vandyke, M. Gasic, D. Kim, N. Mrksic, T.-H. Wen, and S. Young. Learning from real users: Rating dialogue success with neural networks for reinforcement learning in spoken dialogue systems. In SIGDIAL, 2015.
  19. O. Vinyals and Q. Le. A neural conversational model. ICML, Workshop, 2015.
  20. T.-H.
  21. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young. Semantically conditioned lstm-based natural language generation for spoken dialogue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1711-1721, Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL http://aclweb.org/anthology/D15-1199.
  22. T.-H. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, P.-H. Su, S. Ultes, D. Vandyke, and S. Young. A network-based end-to-end trainable task-oriented dialogue system. arXiv:1604.04562, 2016.
  23. J. Weston. Dialog-based language learning. arXiv preprint arXiv:1604.06045, 2016. J. Weston, S. Chopra, and A. Bordes. Memory networks. ICLR, 2015.
  24. S. Young. Probabilistic methods in spoken-dialogue systems. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1769), 2000.
  25. Z. Yu, Z. Xu, A. W. Black, and A. I. Rudnicky. Strategy and policy learning for non-task-oriented conversational systems. In 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 404, 2016.