A Conditional Variational Framework for Dialog Generation
Abstract
Deep latent variable models have been shown to facilitate the response generation for open-domain dialog systems. However , these latent variables are highly ran-domized, leading to uncontrollable generated responses. In this paper, we propose a framework allowing conditional response generation based on specific attributes. These attributes can be either manually assigned or automatically detected. Moreover , the dialog states for both speakers are modeled separately in order to reflect personal features. We validate this framework on two different scenarios, where the attribute refers to genericness and sentiment states respectively. The experiment result testified the potential of our model, where meaningful responses can be generated in accordance with the specified attributes.
References (22)
- Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 .
- Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An- drew M Dai, Rafal Jozefowicz, and Samy Ben- gio. 2015. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349 .
- Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul- cehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 .
- Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael Auli, Chris Quirk, Mar- garet Mitchell, Jianfeng Gao, and Bill Dolan. 2015. deltableu: A discriminative metric for genera- tion tasks with intrinsically diverse targets. arXiv preprint arXiv:1506.06863 .
- Alex Graves. 2012. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711 .
- Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 .
- Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. 2014. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems. pages 3581-3589.
- Diederik P Kingma and Max Welling. 2013. Auto- encoding variational bayes. arXiv preprint arXiv:1312.6114 .
- Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation met- rics for dialogue response generation. arXiv preprint arXiv:1603.08023 .
- Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dia- logue systems. arXiv preprint arXiv:1506.08909 .
- Olivier Pietquin and Helen Hastie. 2013. A survey on metrics for the evaluation of user simulations. The knowledge engineering review 28(01):59-73.
- Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 .
- Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. 2017. A hybrid convolutional variational autoencoder for text generation. arXiv preprint arXiv:1702.02390 .
- Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016. Building end-to-end dialogue systems using generative hier- archical neural network models. AAAI .
- Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville, and Yoshua Bengio. 2017. A hierarchical latent variable encoder-decoder model for generating di- alogues. AAAI .
- Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversa- tion. arXiv preprint arXiv:1503.02364 .
- Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems. pages 3483-3491.
- Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A neural network approach to context-sensitive gen- eration of conversational responses. arXiv preprint arXiv:1506.06714 .
- Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural net- works. In Advances in neural information process- ing systems. pages 3104-3112.
- Oriol Vinyals and Quoc Le. 2015. A neural conversa- tional model. arXiv preprint arXiv:1506.05869 .
- Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. 2016. Attribute2image: Conditional image generation from visual attributes. In European Con- ference on Computer Vision. Springer, pages 776- 791.
- Kaisheng Yao, Geoffrey Zweig, and Baolin Peng. 2015. Attention with intention for a neu- ral network conversation model. arXiv preprint arXiv:1510.08565 .