Academia.eduAcademia.edu

Outline

A Method of Recognition of Arabic Cursive Handwriting

1987, IEEE Transactions on Pattern Analysis and Machine Intelligence

https://doi.org/10.1109/TPAMI.1987.4767970

Abstract

In spite of the progress of machine recognition techniques of Latin, Kana, and Chinese characters over the two past decades, the machine recognition of Arabic characters has remained almost untouched. In this correspondence, a structural recognition method of Arabic cursively handwritten words is proposed. In this method, words are first segmented into strokes. Those strokes are then classified using their geometrical and topological properties. Finally, the relative position of the classified strokes are examined, and the strokes are combined in several steps into a string of characters that represents the recognized word. Experimental results on texts handwritten by two persons showed high recognition accuracy.

References (33)

  1. -, "Advances in pattern recognition," Sci. Amer., vol. 224, pp. 56-71, Apr. 1971.
  2. L. Bahl, "An algorithm for solving simple substitution crypto- grams," in Proc. IEEE Int. Symp. Information Theory (abstract), Ith- aca, NY, 1977.
  3. S. Peleg and A. Rosenfeld, "Breaking substitution ciphers using a relaxation algorithm," Commun. ACM, vol. 22, pp. 598-605, Nov. 1979.
  4. D. G. N. Hunter and A. R. McKenzie, "Experiments with relaxation algorithms breaking simple substitution ciphers," Comput. J., vol. 26, no. 1, pp. 68-71, 1983.
  5. N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
  6. E. Rich, Artificial Intelligence. New York: McGraw-Hill, 1983.
  7. P. H. Winston, Artificial Intelligence. Reading, MA: Addison-Wes- ley, 1977.
  8. R. Rivest, "Partial match algorithms," Siam J. Comput., vol. 5, Mar. 1976.
  9. C. S. Roberts, "Partial match retrieval via the method of superim- posed codes," Proc. IEEE, vol. 67, Dec. 1979.
  10. K. S. O'Mara, W. M. Jaworski, and S. Klasa, "On the development of a recursive model of word structure in the English language," in Applied Systems and Cybernetics V, G. E. Lasker, Ed. New York: Pergamon, 1980.
  11. M. T. Chen and J. Seiferas, "Efficient and elegant subword tree con- struction," Computer Research Review, Univ. Rochester, 1984.
  12. J. L. Peterson, "Computer programs for detecting and correcting spelling errors," Commun. ACM, vol. 23, no. 12, pp. 676-687, Dec. 1980.
  13. C. R. Blair, "A program for correcting spelling errors," Inform. Contr., vol. 3, pp. 60-67, Mar. 1960.
  14. C. N. Alberga, "String similarity and misspellings," Commun. ACM, vol. 10, pp. 302-313, May 1967.
  15. T. Okuda, E. Tanaka, anid T. Kasai, "A mnethod for the correction of garbled words based on the Levenshtein metric," IEEE Trans. Com- put., vol. C-25, pp. 172-177, Feb. 1976.
  16. E. Tanaka, T. Kohashiguchi, and K. Shimamura, "High speed string correction for OCR," in Proc. ICPR-8, Paris, 1986, pp. 340-343.
  17. R. G. Casey, "Text OCR by solving a cryptogram," in Proc. ICPR- 8, Paris, 1986, pp. 349-351.
  18. E] -->seen CV [8+0+0+01[8][8] -->sheen C1 [8+0+0+0 [8][18][E1-->sheen [8+0+0][8+0][81 -->sheen
  19. T. Pavlidis, Structural Pattern Recognition. New York: Springer- Verlag, 1977.
  20. L. N. Kanal and A Rosenfeld, Progress in Pattern Recognition 2. Amsterdam, The Netherlands: Elsevier, 1985; G. R. Dattareya and L. Kanal, Decision Tree in Pattern Recognition.
  21. K. S. Fu, Syntactic Methods in Pattern Recognition. New York: Academic, 1974.
  22. K. Badie and M. Shimura, "Machine recognition of Arabic hand- printed scripts," Trans. Inst. Electron. Commun. Eng., Japan, vol. E65, no. 2, pp. 107-114, Feb. 1982.
  23. A. Amin and G. Masini, "Machine recognition of cursive Arabic words," SPIE Int. Soc. Opt. Eng., vol. 359, pp. 286-292, 1983.
  24. A. Rosenfeld and A. C. Kak, Digital Picture Processing, vol. 2, 2nd ed. New York: Academic, 1982, pp. 232-240.
  25. R. Bozinovic and S. N. Srihari, "A string correction algorithm for cursive script recognition," IEEE Trans. Pattern Anal. Machine In- tell., vol. PAMI-4, no. 6, pp. 655-663, Nov. 1982.
  26. D. J. Burr, "Designing a handwriting reader," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, no. 5, Sept. 1983.
  27. B. Blesser, R. Shillman, T. Kuklinski, C. Cox, M. Eden, J. Ventura, "A theoretical approach for character recognition based on phenom- enological attributes," in Proc. First Int. Joint Conf. Pattern Rec- ognition, Washington, DC, 1973, pp. 33-40.
  28. T. Pavlidis and F. Ali, "Computer recognition of handwritten nu- merals by polygonal approximation," IEEE Tranis. Syst., Man, Cy- bern., vol. SMC-5, no. 6, Nov. 1975.
  29. P. C. Chuang, "Recognition of handprinted numerals by two-stage feature extraction," IEEE Trans. Syst. Sci. Cybern., Apr. 1970.
  30. L. Stark, "A recognition algorithm for handprinted Arabic numer- als," IEEE Trans. Syst. Sci. Cybern., July 1970.
  31. R. Bakis, N. Herbst, and G. Nagy, "An experimental study of ma- chine recognition of hand-printed numerals," IEEE Trans. Syst. Sci. Cybern., July 1968.
  32. L. D. Harmon, "Automatic recognition of print and script," Proc. IEEE, vol. 60, no. 10, pp. 1165-1176, Oct. 1972.
  33. R. W. Ehrich and K. J. Koehler, "Experiments in the recognition of cursive script," IEEE Trans. Comput., vol. C-24, no. 2, pp. 182- 194, Feb. 1975.