Academia.eduAcademia.edu

Outline

Golden Gaskets: Variations on the Sierpiński Sieve

2004, Nonlinearity

https://doi.org/10.1088/0951-7715/17/4/017

Abstract
sparkles

AI

This research presents a study on iterated function systems (IFSs) that do not satisfy the Open Set Condition (OSC), introducing a family of fractals termed Golden Gaskets. It focuses on the behavior of these IFSs for values of the scaling factor λ within the interval (1/2, 2/3), where overlaps among images occur and the invariant set's properties become complex. Results include findings on the Lebesgue measure of the invariant sets and specific values of λ for which the invariant set is totally self-similar, as well as the continuous nature of the Hausdorff dimension of these sets as a function of λ.

References (18)

  1. J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure. J. London Math. Soc. 44 (1991), 121-134.
  2. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Shreiber, Pisot and Salem num- bers, Birkhäuser (1992).
  3. P. Borwein and K. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 (2002), 767-780.
  4. P. Diaconis and D. Freedman, Iterated random functions, SIAM Review 41 (1999), 45-76.
  5. P. Erdős, I. Joó and M. Joó, On a problem of Tamás Varga. Bull. Soc. Math. Fr. 120 (1992), 507-521.
  6. K. Falconer, The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Philos. Soc. 103 (1988), 339-350.
  7. K. Falconer, Fractal Geometry. J. Wiley, Chichester (1990).
  8. A. Garsia, Entropy and singularity of infinite convolutions, Pac. J. Math. 13 (1963), 1159-1169.
  9. P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535-543.
  10. N. Goodman, A. Vajiac and R. Devaney, Fractalina, http://math.bu.edu/DYSYS/applets/fractalina.html
  11. M. Keane, M. Smorodinsky and B. Solomyak, On the morphology of γ-expansions with deleted digits, Trans. Amer. Math. Soc. 347 (1995), 955-966.
  12. D. Mauldin, and M. Urbański, Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. 73 (1996), 105-154.
  13. W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416.
  14. M. Pollicott and K. Simon, The Hausdorff dimension of λ-expansions with deleted digits, Trans. Amer. Math. Soc. 347 (1995), 967-983.
  15. N. Sidorov, Universal β-expansions, preprint, http://www.ma.umist.ac.uk/nikita/universal.pdf
  16. N. Sidorov and A. Vershik, Ergodic properties of Erdős measure, the entropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998), 215-261.
  17. B. Solomyak, Measure and dimension for some fractal families. Math. Proc. Camb. Philos. Soc. 124 (1998), 531-546.
  18. T. Zaimi, On an approximation property of Pisot Numbers, Acta Math. Hungar. 96 (2002), 309-325.