Academia.eduAcademia.edu

Outline

Absolute continuity of complex Bernoulli convolutions

2016, Mathematical Proceedings of the Cambridge Philosophical Society

https://doi.org/10.1017/S0305004116000335

Abstract

We prove that complex Bernoulli convolutions are absolutely continuous in the supercritical parameter region, outside of an exceptional set of parameters of zero Hausdorff dimension. Similar results are also obtained in the biased case, and for other parametrised families of self-similar sets and measures in the complex plane, extending earlier results.

References (24)

  1. Christoph Bandt. On the Mandelbrot set for pairs of linear maps. Nonlinearity, 15(4):1127- 1147, 2002.
  2. Christoph Bandt and Siegfried Graf. Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure. Proc. Amer. Math. Soc., 114(4):995-1001, 1992.
  3. M. F. Barnsley and A. N. Harrington. A Mandelbrot set for pairs of linear maps. Phys. D, 15(3):421-432, 1985.
  4. F. Beaucoup, F. Borwein, D. W. Boyd, and C. Pinner. Multiple roots of r´1, 1s power series. J. Lond. Math. Soc., 57:135-147, 1998.
  5. Dave Broomhead, James Montaldi, and Nikita Sidorov. Golden gaskets: variations on the Sierpiński sieve. Nonlinearity, 17(4):1455-1480, 2004.
  6. Danny Calegary, Sarah Koch, and Alden Walker. Roots, Schottky semigroups, and a proof of Bandt's conjecture. Preprint, arXiv:1410.8542.
  7. Carlos Gustavo T. de A. Moreira and Jean-Christophe Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2), 154(1):45-96, 2001.
  8. Paul Erdős. On a family of symmetric Bernoulli convolutions. Amer. J. Math., 61:974-976, 1939.
  9. Paul Erdős. On the smoothness properties of a family of Bernoulli convolutions. Amer. J. Math., 62:180-186, 1940.
  10. Loukas Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics. Springer, New York, second edition, 2009.
  11. Kevin Hare and Nikita Sidorov. Two-dimensional self-affine sets with interior points, and the set of uniqueness. Preprint, arXiv:1502.07330.
  12. Michael Hochman. On self-similar sets with overlaps and sumset phenomena for entropy in R d . Preprint, arXiv:1503.09043.
  13. Michael Hochman and Pablo Shmerkin. Local entropy averages and projections of fractal measures. Ann. of Math. (2), 175(3):1001-1059, 2012.
  14. Thomas Jordan. Dimension of fat Sierpiński gaskets. Real Anal. Exchange, 31(1):97-110, 2005/06.
  15. Thomas Jordan and Mark Pollicott. Properties of measures supported on fat Sierpinski car- pets. Ergodic Theory Dynam. Systems, 26(3):739-754, 2006.
  16. J.-P. Kahane. Sur la distribution de certaines séries aléatoires. In Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), pages 119-122. Bull. Soc. Math. France, Mém. No. 25, Soc. Math. France Paris, 1971.
  17. Tuomas Orponen. On the distance sets of self-similar sets. Nonlinearity, 25(6):1919-1929, 2012.
  18. Yuval Peres and Wilhelm Schlag. Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J., 102(2):193-251, 2000.
  19. Yuval Peres, Wilhelm Schlag, and Boris Solomyak. Sixty years of Bernoulli convolutions. In Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), volume 46 of Progr. Probab., pages 39-65. Birkhäuser, Basel, 2000.
  20. Yuval Peres and Pablo Shmerkin. Resonance between Cantor sets. Ergodic Theory Dynam. Systems, 29(1):201-221, 2009.
  21. Pablo Shmerkin. On the exceptional set for absolute continuity of Bernoulli convolutions. Geom. Funct. Anal., 24(3):946-958, 2014.
  22. Pablo Shmerkin and Boris Solomyak. Absolute continuity of self-similar measures, their pro- jections and convolutions. Trans. Amer. Math. Soc., to appear. arXiv:1406.0204.
  23. Boris Solomyak. On the random series ř ˘λn (an Erdős problem). Ann. of Math. (2), 142(3):611-625, 1995.
  24. Boris Solomyak and Hui Xu. On the 'Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions. Nonlinearity, 16(5):1733-1749, 2003.