Towards a characterization of universal categories
Journal of Pure and Applied Algebra
https://doi.org/10.1016/J.JPAA.2016.09.006Abstract
In this note we characterize, within the framework of the theory of finite set, those categories of graphs that are algebraic universal in the sense that every concrete category embeds in them. The proof of the characterization is based on the sparse-dense dichotomy and its model theoretic equivalent.
References (27)
- J. Adámek, H. Herrlich, and G. Strecker, Abstract and concrete categories: The joy of cats, Dover, 2004, Reprint of the John Wiley & Sons, New York, 1990 edition, updated in 2004.
- M.E. Adams, J. Nešetřil, and J. Sichler, Quotients of rigid graphs, Journal of Combinatorial Theory, Series B 30 (1981), no. 3, 351-359.
- H. Adler and I. Adler, Interpreting nowhere dense graph classes as a classical notion of model theory, European J. Combin. 36 (2014), 322-330.
- L. Babai, Automorphism groups of graphs and edge-contraction, Discrete Math- ematics 8 (1974), no. 1, 13 -20.
- L. Babai and J. Nešetřil, High chromatic rigid graphs I, Combinatorics (A. Hajnal, V. T. Sós, eds.), Colloq. Math. Soc. János Bolyai, vol. 18, 1978, pp. 53- 60.
- L. Babai and A. Pultr, Endomorphism monoids and topological subgraphs of graphs, J. Combin. Theory Ser. B 28 (1980), no. 3, 278-283.
- Z. Dvořák, Constant-factor approximation of domination number in sparse graphs, European J. Combin. 34 (2013), no. 5, 833-840.
- D. Ensley and R. Grossberg, Finite models, stability, and Ramsey's theorem, arXiv:math/9608205v1 [math.LO], 1996.
- P.J. Freyd, Concreteness, Journal of Pure and Applied Algebra 3 (1973), no. 2, 171-191.
- R. Frucht, Herstellung von graphen mit vorgegebener abstrakter gruppe, Com- positio Mathematica 6 (1939), 239-250.
- M. Grohe, S. Kreutzer, and S. Siebertz, Deciding first-order properties of nowhere dense graphs, Proceedings of the 46 th Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC '14, ACM, 2014, pp. 89- 98.
- P. Hell and J. Nešetril, Groups and monoids of regular graphs (and of graphs with bounded degrees), Canad. J. Math 25 (1973), 239-251.
- P. Hell and J. Nešetřil, Graphs and homomorphisms, Oxford Lecture Series in Mathematics and its Applications, vol. 28, Oxford University Press, 2004.
- J. Hubička and J. Nešetřil, Finite paths are universal, Order 22 (2005), 21-40.
- Universal partial order represented by means of oriented trees and other simple graphs, European J. Combin. 26 (2005), no. 5, 765-778.
- J.R. Isbell, Two set-theoretical theorems in categories, Fund. Math. (1963), no. 53, 1963.
- L. Kučera, Every category is a factorization of a concrete one, Journal of Pure and Applied Algebra 1 (1971), no. 4, 373-376.
- J. Nešetřil and P. Ossona de Mendez, Grad and classes with bounded expansion I. decompositions, European Journal of Combinatorics 29 (2008), no. 3, 760- 776.
- Grad and classes with bounded expansion II. algorithmic aspects, Eu- ropean Journal of Combinatorics 29 (2008), no. 3, 777-791.
- First order properties on nowhere dense structures, The Journal of Symbolic Logic 75 (2010), no. 3, 868-887.
- On nowhere dense graphs, European Journal of Combinatorics 32 (2011), no. 4, 600-617.
- Sparsity (graphs, structures, and algorithms), Algorithms and Com- binatorics, vol. 28, Springer, 2012, 465 pages.
- Structural sparsity, Uspekhi Matematicheskikh Nauk 71 (2016), no. 1, 85-116, (Russian Math. Surveys 71:1 79-107).
- A. Pultr and V. Trnková, Combinatorial algebraic and topological representa- tions of groups, semigroups and categories, North-Holland, 1980.
- G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math 9 (1957), no. 515, C525.
- S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, 1990.
- J. Vinárek, A new proof of the Freyd's theorem, Journal of Pure and Applied Algebra 8 (1976), no. 1, 1-4.