Attractors with vanishing central charge
2007, Physics Letters B
https://doi.org/10.1016/J.PHYSLETB.2007.08.079Abstract
We consider the Attractor Equations of particular N = 2, d = 4 supergravity models whose vector multiplets' scalar manifold is endowed with homogeneous symmetric cubic special Kähler geometry, namely of the so-called st 2 and stu models. In this framework, we derive explicit expressions for the critical moduli corresponding to non-BPS attractors with vanishing N = 2 central charge. Such formulae hold for a generic black hole charge configuration, and they are obtained without formulating any ad hoc simplifying assumption. We find that such attractors are related to the 1 2 -BPS ones by complex conjugation of some moduli. By uplifting to N = 8, d = 4 supergravity, we give an interpretation of such a relation as an exchange of two of the four eigenvalues of the N = 8 central charge matrix Z AB . We also consider non-BPS attractors with non-vanishing Z; for peculiar charge configurations, we derive solutions violating the Ansatz usually formulated in literature. Finally, by group-theoretical considerations we relate Cayley's hyperdeterminant (the invariant of the stu model) to the invariants of the st 2 and of the so-called t 3 model. * On leave of absence from JINR, Dubna, Russia In the framework of N = 2, d = 4 supergravity, such an horizon geometry is associated to the maximal N = 2 supersymmetry algebra psu(1, 1 |2), which is an interesting example of superalgebra containing not Poincaré nor semisimple groups, but direct products of simple groups as maximal bosonic subalgebra. Indeed, in this case the maximal bosonic subalgebra is so(1, 2) ⊕ su(2) (with related maximal spin bosonic subalgebra su(1, 1) ⊕ su(2)), matching the corresponding bosonic isometry group of the Bertotti-Robinson metric (1.1).
References (67)
- S. Ferrara, R. Kallosh and A. Strominger, N = 2 Extrem al Black Holes, Phys. Rev. D52, 5412 (1995), hep-th/9508072.
- A. Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B383, 39 (1996), hep-th/9602111.
- S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D54, 1514 (1996), hep-th/9602136.
- S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D54, 1525 (1996), hep-th/9603090.
- S. Ferrara, G. W. Gibbons and R. Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B500, 75 (1997), hep-th/9702103.
- A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09, 038 (2005), hep-th/0506177.
- K. Goldstein, N. Iizuka, R. P. Jena and S. P. Trivedi, Non-Supersymmetric Attractors, Phys. Rev. D72, 124021 (2005), hep-th/0507096.
- A. Sen, Entropy Function for Heterotic Black Holes, JHEP 03, 008 (2006), hep-th/0508042.
- R. Kallosh, New Attractors, JHEP 0512, 022 (2005), hep-th/0510024.
- P. K. Tripathy and S. P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 0603, 022 (2006), hep-th/0511117.
- A. Giryavets, New Attractors and Area Codes, JHEP 0603, 020 (2006), hep-th/0511215.
- K. Goldstein, R. P. Jena, G. Mandal and S. P. Trivedi, A C-Function for Non-Supersymmetric Attractors, JHEP 0602, 053 (2006), hep-th/0512138.
- M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy function, JHEP 0603, 003 (2006), hep-th/0601016.
- R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS Black Hole Attractor Equation, JHEP 0603, 060 (2006), hep-th/0602005.
- B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric attractors in R 2 gravities, JHEP 0608, 004 (2006), hep-th/0602022.
- J. P. Hsu, A. Maloney and A. Tomasiello, Black Hole Attractors and Pure Spinors, JHEP 0609, 048 (2006), hep-th/0602142.
- S. Bellucci, S. Ferrara and A. Marrani, On some properties of the Attractor Equations, Phys. Lett. B635, 172 (2006), hep-th/0602161.
- S. Bellucci, S. Ferrara and A. Marrani, Supersymmetric Mechanics. Vol.2: The Attractor Mechanism and Space-Time Singularities (LNP 701, Springer-Verlag, Heidelberg, 2006).
- S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev. D 73, 125005 (2006), hep-th/0603247.
- M. Alishahiha and H. Ebrahim, New attractor, Entropy Function and Black Hole Partition Function, JHEP 0611, 017 (2006), hep-th/0605279.
- S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, Charge Orbits of Symmetric Special Geometries and Attractors, Int. J. Mod. Phys. A21, 5043 (2006), hep-th/0606209.
- D. Astefanesei, K. Goldstein, R. P. Jena, A. Sen and S. P. Trivedi, Rotating Attractors, JHEP 0610, 058 (2006), hep-th/0606244.
- R. Kallosh, N. Sivanandam and M. Soroush, Exact Attractive non-BPS STU Black Holes, Phys. Rev. D74, 065008 (2006), hep-th/0606263.
- P. Kaura and A. Misra, On the Existence of Non-Supersymmetric Black Hole Attractors for Two-Parameter Calabi-Yau's and Attractor Equations, hep-th/0607132.
- G. L. Cardoso, V. Grass, D. Lüst and J. Perz, Extremal non-BPS Black Holes and Entropy Extremization, JHEP 0609, 078 (2006), hep-th/0607202.
- S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, Mirror Fermat Calabi-Yau Threefolds and Landau-Ginzburg Black Hole Attractors, hep-th/0608091.
- G.L. Cardoso, B. de Wit and S. Mahapatra, Black hole entropy functions and attractor equations, hep-th/0612225.
- R. D'Auria, S. Ferrara and M. Trigiante, Critical points of the Black-Hole potential for ho- mogeneous special geometries, hep-th/0701090.
- S. Bellucci, S. Ferrara and A. Marrani, Attractor Horizon Geometries of Extremal Black Holes, Contribution to the Proceedings of the XVII SIGRAV Conference,4-7 September 2006, Turin, Italy, hep-th/0702019.
- A. Ceresole and G. Dall'Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 0703, 110 (2007), hep-th/0702088.
- L. Andrianopoli, R. D'Auria, S. Ferrara and M. Trigiante, Black Hole Attractors in N = 1 Supergravity, hep-th/0703178.
- K. Saraikin and C. Vafa, Non-supersymmetric Black Holes and Topological Strings, hep-th/0703214.
- S. Ferrara and A. Marrani, N = 8 non-BPS Attractors, Fixed Scalars and Magic Supergravi- ties, ArXiV:0705.3866.
- S. Nampuri, P. K. Tripathy and S. P. Trivedi, On The Stability of Non-Supersymmetric Attractors in String Theory, ArXiV:0705.4554.
- L. Andrianopoli, R. D'Auria, E. Orazi, M. Trigiante, First Order Description of Black Holes in Moduli Space, ArXiV:0706.0712.
- S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, ArXiV:0706.1667, accepted for publication in Phys. Lett. B.
- G. L. Cardoso, A. Ceresole, G. Dall'Agata, J. M. Oberreuter, J. Perz, First-order flow equa- tions for extremal black holes in very special geometry, ArXiV:0706.3373.
- A. Misra and P. Shukla, 'Area codes', large volume (non-)perturbative alpha-prime and in- stanton: Corrected non-supersymmetric (A)dS minimum, the 'inverse problem' and 'fake superpotentials' for multiple-singular-loci-two-parameter Calabi-Yau's, ArXiV:0707.0105.
- A. Ceresole, S. Ferrara and A. Marrani, 4d/5d Correspondence for the Black Hole Potential and its Critical Points, ArXiV:0707.0964.
- T. Levi-Civita, R.C. Acad. Lincei 26, 519 (1917).
- B. Bertotti, Uniform Electromagnetic Field in the Theory of General Relativity, Phys. Rev. 116, 1331 (1959).
- I. Robinson, Bull. Acad. Polon. 7, 351 (1959).
- L. Andrianopoli, R. D'Auria, S. Ferrara and M. Trigiante, Extremal Black Holes in Super- gravity, in : "String Theory and Fundamental Interactions", M. Gasperini and J. Maharana eds. (LNP, Springer, Berlin-Heidelberg, 2007), hep-th/0611345.
- B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry Structures of Special Geometries, Nucl. Phys. B400, 463 (1993), hep-th/9210068.
- M. Shmakova, Calabi-Yau black holes, Phys. Rev. D56, 540 (1997), hep-th/9612076.
- K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W. K. Wong, STU Black Holes and String Triality, Phys. Rev. D54, 6293 (1996), hep-th/9608059.
- M. J. Duff, J. T. Liu and J. Rahmfeld, Four-dimensional string/string/string triality, Nucl. Phys. B459, 125 (1996), hep-th/9508094.
- A. Ceresole, R. D'Auria and S. Ferrara, The Symplectic Structure of N = 2 Supergravity and Its Central Extension, Talk given at ICTP Trieste Conference on Physical and Mathematical Implications of Mirror Symmetry in String Theory, Trieste, Italy, 5-9 June 1995, Nucl. Phys. Proc. Suppl. 46 (1996), hep-th/9509160.
- R. Arnowitt, S. Deser and C. W. Misner, The Dynamics of General Relativity, in : "Gravi- tation: an Introduction to Current Research", L. Witten ed. (Wiley, New York, 1962).
- G. W. Gibbons and C. M. Hull, A Bogomol'ny Bound for General Relativity and Solitons in N = 2 Supergravity, Phys. Lett. B109, 190 (1982).
- R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Dover Publications, 2006).
- P. Fré, F. Gargiulo, J. Rosseel, K. Rulik, M. Trigiante and A. Van Proeyen, Tits-Satake projec- tions of homogeneous special geometries, Class. Quant. Grav. 24, 27 (2007), hep-th/0606173.
- M.J. Duff, String triality, black hole entropy and Cayley's hyperdeterminant, hep-th/0601134.
- A. Cayley, On the theory of linear transformations, Camb. Math. J. 4, 193 (1845).
- R. Kallosh and A. Linde, Strings, Black Holes and Quantum Information, Phys. Rev. D73, 104033 (2006), hep-th/0602061.
- P. Lévay, Stringy Black Holes and the Geometry of the Entanglement, Phys. Rev. D74, 024030 (2006), hep-th/0603136.
- M.J. Duff and S. Ferrara, E 7 and the tripartite entanglement of seven qubits, quant-ph/0609227.
- P. Lévay, Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane, hep-th/0610314.
- M.J. Duff and S. Ferrara, Black hole entropy and quantum information, hep-th/0612036.
- M.J. Duff and S. Ferrara, E 6 and the and the bipartite entanglement of three qutrits, ArXiV:0704.0507.
- P. Lévay, Black Holes, Attractors and Multipartite Entanglement, lectures given at the School on Attractor Mechanism 2007 (SAM07), 18-22 June 2007, INFN-LNF, Frascati, Italy; to be published on the School Proceedings.
- E. Cartan, OEuvres complètes (Editions du Centre National de la Recherche Scientifique, Paris, 1984).
- E. Cremmer and B. Julia, The SO(8 ) Supergravity, Nucl. Phys. B159, 141 (1979).
- L. Andrianopoli, R. D'Auria and S. Ferrara, U -Invariants, Black-Hole Entropy and Fixed Scalars, Phys. Lett. B403, 12 (1997), hep-th/9703156.
- L. Andrianopoli, R. D'Auria and S. Ferrara, Flat Symplectic Bundles of N -Extended Super- gravities, Central Charges and Black-Hole Entropy, Lectures given at the 5th Winter School on Mathematical Physics held at the Asia Pacific Center for Theoretical Physics, Seul (Ko- rea), Feb. 1997, hep-th/9707203.
- M. Rios, Jordan Algebras and Extremal Black Holes, based on talk given at the 26th Inter- national Colloquium on Group Theoretical Methods in Physics, hep-th/0703238.
- S. Ferrara, E. G. Gimon and R. Kallosh, Magic supergravities, N = 8 and black hole compos- ites, Phys. Rev. D74, 125018 (2006), hep-th/0606211.