Academia.eduAcademia.edu

Outline

Descent on 2-Fibrations and Strongly 2-Regular 2-Categories

2000, Applied Categorical Structures

https://doi.org/10.1023/B:APCS.0000049311.17100.DA

Abstract

We consider pseudo-descent in the context of 2-fibrations. A 2-category of descent data is associated to a 3-truncated simplicial object in the base 2-category. A morphism q in the base induces (via comma-objects and pullbacks) an internal category whose truncated nerve allows the definition of the 2-category of descent data for q. When the 2-fibration admits direct images, we provide the analogous of the Beck-Bénabou-Roubaud theorem, identifying the 2-category of descent data with that of pseudo-algebras for the pseudo-monad q * Σq. We introduce a notion of 2-regularity for a 2-category R, so that its basic 2-fibration of internal fibrations cod : Fib(R) → R admits direct images. In this context, we show that essentiallysurjective-on-objects morphisms, defined by a certain lax colimit, are of effective descent by means of a Beck-style pseudo-monadicity theorem.

References (31)

  1. Bénabou, J. and R. Roubaud: 1970, 'Monades et descente'. C.R.A.S. Paris, A pp. 96-98.
  2. Blackwell, R., G. Kelly, and A. Power: 1989, 'Two dimensional monad theory'. Journal of Pure and Applied Algebra 59(1), 1-41.
  3. Borceux, F.: 1994, Handbook of Categorical Algebra II: Categories and Struc- tures, Vol. 51 of Encyclopedia of Mathematics and its applications. Cambridge University Press.
  4. Carboni, A., S. Johnson, R. Street, and D. Verity: 1994, 'Modulated bicategories'. Journal of Pure and Applied Algebra 94(3), 229-282.
  5. Day, B. and R. Street: 1997, 'Monoidal bicategories and Hopf algebroids'. Advances in Mathematics 129(1), 99-157.
  6. Freyd, P. J. and A. Scedrov: 1990, Categories, allegories, Vol. 39 of North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co.
  7. Gabriel, P. and M. Zisman: 1967, Calculus of Fractions and Homotopy Theory. Springer Verlag.
  8. Giraud, J.: 1964, 'Méthode de la descente'. Bull. Soc. Math. Fr., Suppl., Mm. 2. Gordon, R., A. J. Power, and R. Street: 1995, 'Coherence for tricategories'. Memoirs of the AMS 117(558).
  9. Grothendieck, A.: 1971, 'Catégories fibrées et descente'. In: A. Grothendieck (ed.): Revêtements étales et groupe fondamental, (SGA 1), Exposé VI, Vol. 224 of Lecture Notes in Mathematics. Springer Verlag.
  10. Hardie, K. A., K. H. Kamps, and R. W. Kieboom: 2002, 'Fibrations of bigroupoids'. J. Pure Appl. Algebra 168(1), 35-43.
  11. Hermida, C.: 1999, 'Some properties of Fib as a fibred 2-category'. Journal of Pure and Applied Algebra 134(1), 83-109. Presented at ECCT'94, Tours, France.
  12. Hermida, C.: 2001, 'From coherent structures to universal properties'. Journal of Pure and Applied Algebra 165(1), 7-61. preprint available math.CT/0006161.
  13. Hermida, C.: 2002, 'Fibrations and Yoneda structure for multicategories'. presented at Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Institute, Toronto, September 23-28.
  14. Janelidze, G. and W. Tholen: 1994, 'Facets of Descent I'. Applied Categorical Structures 2, 1-37.
  15. Janelidze, G. and W. Tholen: 1997, 'Facets of Descent II'. Applied Categorical Structures 5(3), 229-248.
  16. Joyal, A. and R. Street: 1993, 'Pullbacks equivalent to pseudopullbacks'. Cahiers Topologie Géom. Differentielle Catégoriques XXXIV(2), 153-156.
  17. Kelly, G.: 1989, 'Elementary observations on 2-categorical limits'. Bulletin Aus- tralian Mathematical Society 39, 301-317.
  18. Kelly, G. M.: 1974, 'Coherence theorems for lax algebras and for distributive laws'. In: Category Seminar (Proc. Sem., Sydney, 1972/1973). Berlin: Springer, pp. 281-375. Lecture Notes in Math., Vol. 420.
  19. Lack, S.: 2000, 'A coherent approach to pseudomonads'. Advances in Mathematics 152, 179-202.
  20. Le Creurer, I. J., F. Marmolejo, and E. M. Vitale: 2002, 'Beck's theorem for pseudo- monads'. J. Pure Appl. Algebra 173(3), 293-313.
  21. MacLane, S.: 1998, Categories for the Working Mathematician. Springer Verlag. 2nd. edition.
  22. Makkai, M.: 1993, 'Definability and Duality in First-Order Logic'. Vol. 503 of Memoirs of the AMS.
  23. Marmolejo, F.: 1999, 'Distributive laws for pseudomonads'. Theory and Applications of Categories 5, 91-147. available at http://www.tac.mta.ca/tac/.
  24. Moerdijk, I.: 1990, 'Lectures on 2-dimensional groupoids'. Séminaire de
  25. Mathématique, Institut de mathématique pure et appliquée, Université catholique de Louvain (175), 301-353.
  26. Moerdijk, I. and J. J. C. Vermeulen: 2000, 'Proper maps of toposes'. Mem. Amer. Math. Soc. 148(705), x+108.
  27. Street, R.: 1973, 'Fibrations and Yoneda's Lemma in a 2-category'. In: Category Seminar, Vol. 420 of Lecture Notes in Mathematics. Springer Verlag.
  28. Street, R.: 1980, 'Fibrations in bicategories'. Cahiers Topologie Géom. Differentielle Catégoriques 21.
  29. Street, R.: 1982, 'Two Dimensional Sheaf Theory'. Journal of Pure and Applied Algebra 23, 251-270.
  30. Street, R.: 1995, 'Descent Theory'. notes of a talk delivered at Higher descent structures, Geometric and Logical Aspects of Descent Theory 17.09.-23.09.1995 (Tagungsbericht 38/1995, Mathematisches Forschungsinstitut Oberwolfach).
  31. Street, R. and R. Walters: 1978, 'Yoneda structures on a 2-categories'. Journal of Algebra 50, 350-379.