Adjunction contexts and regular quasi-monads
2011
Abstract
For functors $L:\A\to \B$ and $R:\B\to \A$ between any categories $\A$ and $\B$, a {\em pairing} is defined by maps, natural in $A\in \A$ and $B\in \B$, $$\xymatrix{\Mor_\B (L(A),B) \ar@<0.5ex>[r]^{\alpha} & \Mor_\A (A,R(B))\ar@<0.5ex>[l]^{\beta}}.$$ $(L,R)$ is an {\em adjoint pair} provided $\alpha$ (or $\beta$) is a bijection. In this case the composition $RL$ defines a monad on the category $\A$, $LR$ defines a comonad on the category $\B$, and there is a well-known correspondence between monads (or comonads) and adjoint pairs of functors. For various applications it was observed that the conditions for a unit of a monad was too restrictive and weakening it still allowed for a useful generalised notion of a monad. This led to the introduction of {\em weak monads} and {\em weak comonads} and the definitions needed were made without referring to this kind of adjunction. The motivation for the present paper is to show that these notions can be naturally derived from pairings of functors $(L,R,\alpha,\beta)$ with $\alpha = \alpha\dcirc \beta\dcirc \alpha$ and $\beta = \beta \dcirc\alpha\dcirc\beta$. Following closely the constructions known for monads (and unital modules) and comonads (and counital comodules), we show that any weak (co)monad on $\A$ gives rise to a regular pairing between $\A$ and the category of {\em compatible (co)modules}.
References (23)
- Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., and Rodríguez Raposo, A.B., Crossed products in weak contexts, Appl. Categ. Struct. 18(3) (2010), 231-258.
- Beck, J., Distributive laws, [in:] Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM 80 (1969), 119-140.
- Böhm, G., The weak theory of monads, Adv. Math. 225(1) (2010), 1-32.
- Böhm, G., Lack, S. and Street, R., On the 2-category of weak distributive laws, Commun. Algebra 39(12) (2011), 4567-4583.
- Böhm, G., Lack, S. and Street, R., Idempotent splittings, colimit completion, and weak aspects of the theory of monads, J. Pure Appl. Algebra 216 (2012), 385-403.
- Böhm, G., Nill, F. and Szlachányi, K., Weak Hopf algebras I: Integral theory and C * -structure, J. Algebra 221(2) (1999), 385-438.
- Brzeziński, T., The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Alg. Rep. Theory 5 (2002), 389-410.
- Brzeziński, T. and Wisbauer, R., Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press (2003).
- Caenepeel, S. and De Groot, E., Modules over weak entwining structures, Andruskiewitsch, N. (ed.) et al., New trends in Hopf algebra theory. Proc. Coll. quantum groups and Hopf algebras, La Falda, Argentina, 1999. Providence, Amer. Math. Soc., Contemp. Math. 267 (2000), 31-54.
- Eilenberg, S. and Moore, J.C., Adjoint functors and triples, Ill. J. Math. 9 (1965), 381-398.
- Fernández Vilaboa, J.M., González Rodríguez, R. and Rodríguez Raposo, A.B., Preunits and weak crossed products, J. Pure Appl. Algebra 213(12) (2009), 2244-2261.
- Fernández Vilaboa, J.M., González Rodríguez, R. and Rodríguez Raposo, A.B., Weak Crossed Biprod- ucts and Weak Projections, arXiv:0906.1693 (2009).
- Johnstone, P.T., Adjoint lifting theorems for categories of modules, Bull. Lond. Math. Soc. 7 (1975), 294-297.
- Kasch, F. and Mader, A., Regularity and substructures of Hom, Frontiers in Mathematics, Birkhäuser Basel (2009)
- Lack, S. and Street, R., The formal theory of monads II, J. Pure Appl. Algebra 175(1-3) (2002), 243-265.
- Medvedev, M.Ya., Semiadjoint functors and Kan extensions, Sib. Math. J. 15 (1974), 674-676; trans- lation from Sib. Mat. Zh. 15 (1974), 952-956.
- Mesablishvili, B. and Wisbauer, R., Bimonads and Hopf monads on categories, J. K-Theory 7(2) (2011), 349-388.
- Mesablishvili, B. and Wisbauer, R., On Rational Pairings of Functors, arXiv:1003.3221 (2010), to appear in Appl. Cat. Struct., DOI: 10.1007/s10485-011-9264-1
- Pareigis, B., Kategorien und Funktoren, Mathematische Leitfäden, Teubner Verlag, Stuttgart (1969).
- Street, R., The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149168.
- Wisbauer, R., Weak corings, J. Algebra 245(1) (2001), 123-160.
- Wisbauer, R., Algebras versus coalgebras, Appl. Categ. Struct. 16(1-2) (2008), 255-295.
- Wisbauer, R., Lifting theorems for tensor functors on module categories, J. Algebra Appl. 10(1) (2011), 129-155.