Nonstandard Analysis and Vector Lattices
https://doi.org/10.1007/978-94-011-4305-9Abstract
AI
AI
This paper explores the applications and implications of nonstandard analysis within the realm of vector lattices. It discusses the innovative contributions of infinitesimal and Boolean valued analysis to understanding mathematical foundations and structures. The text emphasizes the importance of these methods in redefining traditional calculus and their relevance in contemporary mathematical fields, providing a synthesis that leads to new interpretations and progress in various analytical approaches.
References (162)
- Bukhvalov A. V. et al., Vector Lattices and Integral Operators [in Russian], Novosibirsk, Nauka (1992).
- Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Dordrecht etc., Kluwer Academic Publishers (1996).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis [in Russian], Novosibirsk, Nauka (1990).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis, Dor- drecht etc.: Kluwer Academic Publishers (1994).
- Kusraev A. G. and Kutateladze S. S., Boolean Valued Analysis [in Russian], Novosibirsk, Sobolev Institute Press (1999).
- Kusraev A. G. and Kutateladze S. S., Boolean Valued Analysis, Dordrecht etc., Kluwer Academic Publishers (1999). References
- Akilov G. P., Kolesnikov E. V., and Kusraev A. G., "On order continuous extension of a positive operator," Sibirsk. Mat. Zh., 29, No. 5, 24-35 (1988).
- Akilov G. P. and Kutateladze S. S., Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).
- Albeverio S., Fenstad J. E., et al., Nonstandard Methods in Stochastic Anal- ysis and Mathematical Physics, Academic Press, Orlando etc. (1990).
- Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985).
- Ballard D. and Hrbáček K., "Standard foundations of nonstandard analysis," J. Symbolic Logic, 57, No. 2, 741-748 (1992).
- Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc. (1985).
- Bukhvalov A. V., "Order bounded operators in vector lattices and spaces of measurable functions," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1988, pp. 3-63 (Itogi Nauki i Tekhniki, 26).
- Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Kluwer Aca- demic Publishers, Dordrecht (1996).
- Cohen P. J., Set Theory and the Continuum Hypothesis, Benjamin, New York etc. (1966).
- Cozart D. and Moore L. C. Jr., "The nonstandard hull of a normed Riesz space," Duke Math. J., 41, 263-275 (1974).
- Cutland N., "Nonstandard measure theory and its applications," Proc. Lon- don Math. Soc., 15, No. 6, 530-589 (1983).
- Dacunha-Castelle D. and Krivine J. L., "Applications des ultraproducts a l'etude des espaces et des algebres de Banach," Studia Math., 41, 315-334 (1972).
- Gordon H., "Decomposition of linear functionals on Riesz spaces," Duke Math. J., 27, 323-332 (1960).
- Gordon E. I., "Real numbers in Boolean-valued models of set theory and K-spaces," Dokl. Akad. Nauk SSSR, 237, No. 4, 773-775 (1977).
- Gordon E. I., "K-spaces in Boolean-valued models of set theory," Dokl. Akad. Nauk SSSR, 258, No. 4, 777-780 (1981).
- Gordon E. I., "To the theorems of relation preservation in K-spaces," Sibirsk. Mat. Zh., 23, No. 5, 55-65 (1982).
- Gordon E. I., "Nonstandard finite-dimensional analogs of operators in L 2 (R n )," Sibirsk. Mat. Zh., 29, No. 2, 45-59 (1988).
- Gordon E. I., "Relative standard elements in E. Nelson's internal set theory," Sibirsk. Mat. Zh., 30, No. 1, 89-95 (1989).
- Gordon E. I., "On Loeb measures," Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 25-33 (1991).
- Gordon E. I., "Nonstandard analysis and compact Abelian groups," Sibirsk. Mat. Zh., 32, No. 2, 26-40 (1991).
- Gordon E. I., Nonstandard Methods in Commutative Harmonic Analysis, Amer. Math. Soc., Providence, RI (1997).
- Gumilëv N. S., Verses and Poems [in Russian], Sov. Pisatel , Leningrad (1988).
- Halmos P. R., Lectures on Boolean Algebras, Van Nostrand, Toronto, New York, and London (1963).
- Heinrich S., "Ultraproducts in Banach space theory," J. Reine Angem. Math., 313, 72-104 (1980).
- Kaplansky I., "Algebras of type I," Ann. of Math., 56, 460-472 (1952).
- Kaplansky I., "Modules over operator algebras," Amer. J. Math., 75, No. 4, 839-858 (1953).
- Kawai T., "Axiom systems of nonstandard set theory," in: Logic Symposia, Hakone 1979, 1980, Springer-Verlag, Berlin etc., 1981, pp. 57-65.
- Kawai T., "Nonstandard analysis by axiomatic method," in: Southeast Asian Conference on Logic, North-Holland, Amsterdam etc., 1983, pp. 55-76.
- Kolesnikov E. V., "Decomposition of a positive operator," Sibirsk. Mat. Zh., 30, No. 5, 70-73 (1989).
- Kolesnikov E. V., Kusraev A. G., and Malyugin S. A., On Dominated Oper- ators [in Russian] [Preprint, No. 26], Sobolev Inst. Mat., Novosibirsk (1988).
- Krivine J. L., "Langages a valeurs reelles et applications," Fund. Math., 81, No. 3, 213-253 (1974).
- Kusraev A. G., "General desintegration formulas," Dokl. Akad. Nauk SSSR, 265, No. 6, 1312-1316 (1982).
- Kusraev A. G., "Boolean valued analysis of duality between universally com- plete modules," Dokl. Akad. Nauk SSSR, 267, No. 5, 1049-1052 (1982).
- Kusraev A. G., "On some categories and functors of Boolean valued analysis," Dokl. Akad. Nauk SSSR, 271, No. 1, 281-284 (1983).
- Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).
- Kusraev A. G., "On Banach-Kantorovich spaces," Sibirsk. Mat. Zh., 26, No. 2, 119-126 (1985).
- Kusraev A. G., "Numeric systems in Boolean-valued models of set theory," in: Proceedings of the VIII All-Union Conference on Mathematical Logic (Moscow), Moscow, 1986, p. 99.
- Kusraev A. G., "Linear operators in lattice normed spaces," in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84-123.
- Kusraev A. G., "On functional representation of type I AW * -algebras," Si- birsk. Mat. Zh., 32, No. 3, 78-88 (1991).
- Kusraev A. G., "Dominated operators," in: Linear Operators Compatible with Order [in Russian], Sobolev Institute Press, Novosibirsk, 1995, pp. 212- 292.
- Kusraev A. G. and Kutateladze S. S., "Combining nonstandard methods," Sibirsk. Mat. Zh., 31, No. 5, 111-119 (1990).
- Kusraev A. G. and Kutateladze S. S., Boolean Valued Analysis, Kluwer Aca- demic Publishers, Dordrecht (1999).
- Kusraev A. G. and Kutateladze S. S., Subdifferentials: Theory and Applica- tions, Kluwer Academic Publishers, Dordrecht (1995).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis, Kluwer Academic Publishers, Dordrecht (1994).
- Kusraev A. G. and Malyugin S. A., Some Questions of the Theory of Vector Measures [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk (1988).
- Kusraev A. G. and Malyugin S. A., "On atomic decomposition of vector measures," Sibirsk. Mat. Zh., 30, No. 5, 101-110 (1989).
- Kusraev A. G. and Malyugin S. A., "The product and projective limit of vector measures," in: Contemporary Problems of Geometry and Analysis [in Russian], Nauka, Novosibirsk, 1989, pp. 132-152.
- Kusraev A, G. and Malyugin S. A., "On extension of finitely additive mea- sures," Mat. Zametki, 48, No. 1, 56-60 (1990).
- Kusraev A. G. and Strizhevskiȋ V. Z., "Lattice normed spaces and dominated operators," in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132-158.
- Kutateladze S. S., "Supporting sets of sublinear operators," Dokl. Akad. Nauk SSSR, 230, No. 5, 1029-1032 (1976).
- Kutateladze S. S., "Subdifferentials of convex operators," Sibirsk. Mat. Zh., 18, No. 5, 1057-1064 (1977).
- Kutateladze S. S., "Extreme points of subdifferentials," Dokl. Akad. Nauk SSSR, 242, No. 5, 1001-1003 (1978).
- Kutateladze S. S., "The Kreȋn-Milman theorem and its converse," Sibirsk. Mat. Zh., 21, No. 1, 130-138 (1980).
- Kutateladze S. S., "Descents and ascents," Dokl. Akad. Nauk SSSR, 272, No. 2, 521-524 (1983).
- Kutateladze S. S., "Cyclic monads and their applications," Sibirsk. Mat. Zh., 27, No. 1, 100-110 (1986).
- Kutateladze S. S., "Monads of ultrafilters and extensional filters," Sibirsk. Mat. Zh., 30, No. 1, 129-133 (1989).
- Kutateladze S. S., "Fragments of a positive operator," Sibirsk. Mat. Zh., 30, No. 5, 111-119 (1989).
- Kutateladze S. S., "Credenda of nonstandard analysis," Siberian Adv. Math., 1, No. 1, 109-137 (1991).
- Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht (1996).
- Leibniz G. W., Discourse on Metaphysics and Other Essays, Hackett Publis- ing Co., Indianapolis (1991).
- Lipecki Z., Plachky D., and Thompsen W., "Extensions of positive operators and extreme points. I," Colloq. Math., 42, 279-284 (1979).
- Luxemburg W. A. J., "A general theory of monads," in: Applications of Mod- el Theory to Algebra, Analysis and Probability, Holt, Rinehart and Minston, Chapter 1
- New York, 1966, pp. 18-86.
- Luxemburg W. A. J. and Schep A. R., "A Radon-Nikodým type theorem for positive operators and a dual," Indag. Math., 40, 357-375 (1978).
- Luxemburg W. A. J. and Zaanen A. C., Riesz Spaces. Vol. 1, North-Holland, Amsterdam and London (1971).
- Lyubetskiȋ V. A., "Truth-values and bundles. On some problems of nonstan- dard analysis," Uspekhi Mat. Nauk, 55, No. 6, 99-153 (1979).
- Lyubetskiȋ V. A. and Gordon E. I., "Boolean completion of uniformities," in: Studies on Nonclassical Logics and Formal Systems [in Russian], Nauka, Moscow, 1983, pp. 82-153.
- Maharam D., "On kernel representation of linear operators," Trans. Amer. Math. Soc., 79, No. 1, 229-255 (1955).
- Maharam D., "On positive operators," Contemporary Math., 26, 263-277 (1984).
- Nelson E., "Internal set theory. A new approach to nonstandard analysis," Bull. Amer. Math. Soc., 83, No. 6, 1165-1198 (1977).
- Nelson E., "The syntax of nonstandard analysis," Ann. Pure Appl. Logic, 38, No. 2, 123-134 (1988).
- Ozawa M., "Boolean valued interpretation of Hilbert space theory," J. Math. Soc. Japan, 35, No. 4, 609-627 (1983).
- Ozawa M., "A classification of type I AW * -algebras and Boolean valued anal- ysis," J. Math. Soc. Japan, 36, No. 4, 589-608 (1984).
- Ozawa M., "A transfer principle from von Neumann algebras to AW * -algeb- ras," J. London Math. Soc. (2), 32, No. 1, 141-148 (1985).
- Ozawa M., "Nonuniqueness of the cardinality attached to homogeneous AW * - algebras," Proc. Amer. Math. Soc., 93, 681-684 (1985).
- Pagter B. de, "The components of a positive operator," Indag. Math., 45, No. 2, 229-241 (1983).
- Péraire Y., "Une nouvelle théorie des infinitesimaux," C. R. Acad. Sci. Paris Ser. I, 301, No. 5, 157-159 (1985).
- Péraire Y., "A general theory of infinitesimals," Sibirsk. Mat. Zh., 31, No. 3, 107-124 (1990).
- Péraire Y., "Théorie relative des ensembles internes," Osaka J. Math., 29, No. 2, 267-297 (1992).
- Péraire Y., "Some extensions of the principles of idealization, transfer and choice in the relative internal set theory," Arch. Math. Logic, 34, 269-277 (1995).
- Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc. (1974).
- Schwarz H.-U., Banach Lattices and Operators, Teubner, Leipzig (1984).
- Sikorski R., Boolean Algebras, Springer-Verlag, Berlin etc. (1964).
- Sobolev V. I., "On a poset valued measure of a set, measurable functions, and some abstract integrals," Dokl. Akad. Nauk SSSR, 91, No. 1, 23-26 (1953).
- Solovay R. M., "A model of set theory in which every set of reals is Lebesgue measurable," Ann. of Math. (2), 92, No. 2, 1-56 (1970).
- Solovay R. and Tennenbaum S., "Iterated Cohen extensions and Souslin's problem," Ann. Math., 94, No. 2, 201-245 (1972).
- Stern J., "Some applications of model theory in Banach space theory," Ann. Math. Logic, 9, No. 1, 49-121 (1976).
- Stern J., "The problem of envelopes for Banach spaces," Israel J. Math., 24, No. 1, 1-15 (1976).
- Takeuti G., Two Applications of Logic to Mathematics, Princeton, Iwanami and Princeton Univ. Press, Tokyo (1978).
- Takeuti G., "A transfer principle in harmonic analysis," J. Symbolic Logic, 44, No. 3, 417-440 (1979).
- Takeuti G., "Boolean valued analysis," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin etc., 1979.
- Takeuti G. and Zaring W. M., Axiomatic Set Theory, Springer-Verlag, New York (1973).
- Troitskiȋ V. G., "Nonstandard discretization and the Loeb extension of a family of measures," Siberian Math. J., 34, No. 3, 566-573 (1993).
- Vladimirov D. A., Boolean Algebras [in Russian], Nauka, Moscow (1969).
- Vopěnka P., "General theory of -models," Comment. Math. Univ. Carolin., 7, No. 1, 147-170 (1967).
- Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig (1979).
- Vopěnka P. and Hajek P., The Theory of Semisets, North-Holland, Amster- dam (1972).
- Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Noord- hoff, Groningen (1967).
- Wang H. and McNaughton R., Les Systemes Axiomatiques de la Theorie des Ensemblas, Paris and Louvain (1962).
- Zaanen A. C., Riesz Spaces. Vol. 2, North-Holland, Amsterdam etc. (1983). References
- Arkhangel skiȋ A. V. and Ponomarëv V. I., Fundamentals of General Topology: Problems and Exercises, Reidel, Dordrecht etc. (1984).
- Bourbaki N., General Topology. Parts 1 and 2, Addison-Wesley, Reading (1966).
- Gordon E. I. and Morozov S. F., Boolean Valued Models of Set Theory [in Rus- sian], Gor kiȋ State University, Gor kiȋ (1982).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods in Analysis, Kluw- er, Dordrecht (1994).
- Sikorski R., Boolean Algebras, Springer-Verlag, Berlin (1964).
- Solovay R. and Tennenbaum S., "Iterated Cohen extensions and Souslin's prob- lem," Ann. Math., 94, No. 2, 201-245 (1972).
- Vladimirov D. A., Boolean Algebras [in Russian], Nauka, Moscow (1969). References
- Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985).
- Arkhangel skiȋ A. V. and Ponomarëv V. I., Fundamentals of General Topology: Problems and Exercises, Reidel, Dordrecht etc. (1984).
- Burden C. W. and Mulvey C. J., "Banach spaces in categories of sheaves,"in: Applications of Sheaves, Springer-Verlag, Berlin, 1979, pp. 169-196 (Lecture Notes in Math.; 753).
- Diestel J., Sequences and Series in Banach Spaces,Springer-Verlag, Berlin etc. (1984) (Graduate Texts in Mathematics, 92).
- Engelking R., General Topology, Springer-Verlag, Berlin etc. (1985).
- Fourman M. P., Mulvey C. J., and Scott D. S. (eds.), Applications of Sheaves, Springer-Verlag, Berlin (1979) (Lecture Notes in Math.; 753).
- Gierz G., Bundles of Topological Vector Spaces and Their Duality, Springer- Verlag, Berlin (1982) (Lecture Notes in Math.; 955).
- Gutman A. E., "Banach bundles in the theory of lattice normed spaces. I. Continuous Banach bundles," Siberian Adv. Math., 3, No. 3, 1-55 (1993).
- Gutman A. E., "Banach bundles in the theory of lattice normed spaces. II. Measurable Banach bundles," Siberian Adv. Math., 3, No. 4, 8-40 (1993).
- Gutman A. E., "Banach bundles in the theory of lattice normed spaces. III. Approximating sets and bounded operators," Siberian Adv. Math., 4, No. 2, 54-75 (1994).
- Gutman A. E., "Locally one-dimensional K-spaces and σ-distributive Boolean algebras," Siberian Adv. Math., 5, No. 2, 99-121 (1995).
- Gutman A. E., "Banach bundles in the theory of lattice normed spaces," in: Linear Operators Coordinated with Order [in Russian], Trudy Inst. Mat. (No- vosibirsk), Novosibirsk, 1995, 29, pp. 63-211.
- Hofmann K. H., "Representations of algebras by continuous sections," Bull. Amer. Math. Soc., 78, 291-373 (1972).
- Hofmann K. H. and Keimel K., "Sheaf theoretical concepts in analysis: bundles and sheaves of Banach spaces, Banach C(X)-modules," in: Applications of Sheaves, Springer-Verlag, Berlin, 1979, pp. 414-441.
- Kitchen J. W. and Robbins D. A., Gelfand Representation of Banach Modules, Polish Scientific Publishers, Warszawa (1982) (Dissertationes Mathematicae;
- Koptev A. V., "A reflexivity criterion for stalks of a Banach bundle," Siberian Math. J., 36, No. 4, 735-739 (1995) (Translated from Russian: Sibirsk. Mat. Zh. 1995. 36, No. 4, 851-857).
- Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, No- vosibirsk (1985).
- Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht (1996).
- Schochetman I. E., "Kernels and integral operators for continuous sums of Ba- nach spaces," Mem. Amer. Math. Soc., 14, No. 202, 1-120 (1978).
- Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters- Noordhoff, Groningen, Netherlands (1967).
- Wnuk W., Banach Lattices with Properties of the Schur Type. A Survey, Dipartimento di Matematica dell'Università di Bari, Bari (1993). References
- Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York and London (1985).
- Albeverio S., Fenstad J. E., et al., Nonstandard Methods in Stochastic Anal- ysis and Mathematical Physics, Academic Press, Orlando etc. (1990).
- Bernau S. J., "Sums and extensions of vector lattice homomorphisms," Acta Appl. Math., 27, 33-45 (1992).
- Conshor H., "Enlargements contain various kinds of completions," in: Victo- ria Symposium of Nonstandard Analysis, Springer-Verlag, Berlin etc., 1974, pp. 60-79. (Lecture Notes in Math., 369.)
- Cozart D and Moore L. C., "The nonstandard hull of a normed Riesz space," Duke Math. J., No. 41, 263-275 (1974).
- Emel yanov È. Yu., "The order and regular hulls of Riesz spaces," Sibirsk. Mat. Zh., 35, No. 6, 1243-1252 (1994).
- Emel yanov È. Yu., "Banach-Kantorovich spaces associated with the order hulls of decomposable lattice normed spaces," Sibirsk. Mat. Zh., 36, No. 1, 72-85 (1995).
- Emel yanov È. Yu., "The infinitesimal approach to the representation of vec- tor lattices by spaces of continuous functions on a compactum," Dokl. Akad. Nauk, 344, No. 1, 9-11 (1995).
- Emel yanov È. Yu., "Infinitesimal analysis and vector lattices," Siberian Adv. Math., 6, No. 1, 19-70 (1996).
- Emel yanov È. Yu., "Invariant homomorphisms of nonstandard enlargements of Boolean algebras and vector lattices," Sibirsk. Mat. Zh., 38, No. 2, 286- 296 (1997).
- Henson C. W. and Moore L. C., "Nonstandard analysis and the theory of Ba- nach spaces," in: Nonstandard Analysis: Recent Developments, Springer- Verlag, Berlin etc., 1983, pp. 27-112. (Lecture Notes in Math., 983.)
- Hurd A. E. and Loeb P. A., An Introduction to Nonstandard Real Analysis, Academic Press, Orlando etc. (1985).
- Kusraev A. G., "Dominated operators. I," Siberian Adv. Math., 4, No. 3, 51-82 (1994).
- Kusraev A. G., "Dominated operators. II," Siberian Adv. Math., 4, No. 4, 24-59 (1994).
- Kusraev A. G., "Dominated operators. III," Siberian Adv. Math., 5, No. 1, 49-76 (1995).
- Kusraev A. G., "Dominated operators. IV," Siberian Adv. Math., 5, No. 2, 99-121 (1995).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis, Kluwer Academic Publishers, Dordrecht (1994).
- Kusraev A. G. and Kutateladze S. S., "Nonstandard methods for Kantorovich spaces," Siberian Adv. Math., 2, No. 2, 114-152 (1992).
- Kusraev A. G. and Strizhevskiȋ V. Z., "Lattice normed spaces and dominated operators," in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132-158.
- Luxemburg W. A. J., "A general theory of monads," in: Applications of Model Theory to Algebra, Analysis, and Probability, Holt, Rinehart, and Winston, New York, 1969, pp. 18-86.
- Luxemburg W. A. J. and A. C. Zaanen A. C., Riesz Spaces. Vol. 1, North- Holland, Amsterdam and London (1971).
- Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc. (1991).
- Robinson A., "Non-standard analysis," Proc. Roy. Acad. Amsterdam Ser. A, No. 64, 432-440 (1961).
- Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc. (1974).
- Sikorski R., Boolean Algebras, Springer-Verlag, Berlin etc. (1964).
- Veksler A. I., "The Archimedes principle in the homomorphs of l-groups and vector lattices," Izv. Vyssh. Uchebn. Zaved. Mat., No. 5 (53), 33-38 (1966).
- Wolff M. P. H., "An introduction to nonstandard functional analysis. Non- standard analysis (Edinburgh, 1996)," NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., 493; Kluwer Academic Publishing, Dordrecht, 1997, pp. 121-151.
- Zaanen A. C., Riesz Spaces. Vol. 2, North-Holland, Amsterdam etc. (1983).