Academia.eduAcademia.edu

Outline

Boolean Valued Analysis

Abstract
sparkles

AI

Boolean valued analysis is a methodology for analyzing mathematical objects through comparisons in two set-theoretic models that utilize distinct Boolean algebras. This approach is rooted in nonstandard analysis and highlights the independence of the continuum hypothesis from Zermelo-Fraenkel set theory. The growing significance of Boolean valued analysis is tied to key proofs by Cohen and Gödel regarding the continuum hypothesis.

References (264)

  1. Akilov G. P. and Kutateladze S. S., Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).
  2. Alfsen E. M., Shultz F. W., and Störmer E., "A Gelfand-Neumark theorem for Jordan algebras," Adv. in Math., 28, No. 1, 11-56 (1978).
  3. Aliprantis C. D. and Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York etc. (1978).
  4. Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985).
  5. Arens R. F. and Kaplansky I., "Topological representation of algebras," Trans. Amer. Math. Soc., 63, No. 3, 457-481 (1948).
  6. Arveson W., An Invitation to C * -Algebras, Springer-Verlag, Berlin (1976).
  7. Ayupov S. A., "Jordan operator algebras," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1985, pp. 67-97. (Itogi Nauki i Tekhniki, 27.)
  8. Ayupov S. A., Classification and Representation of Ordered Jordan Algebras [in Russian], Fan, Tashkent (1986).
  9. Beȋdar K. I. and Mikhalëv A. V., "Orthogonal completeness and algebraic systems," Uspekhi Mat. Nauk, 40, No. 6, 79-115 (1985).
  10. Bell J. L. and Slomson A. B., Models and Ultraproducts: an Introduction, North-Holland, Amsterdam etc. (1969).
  11. Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc. (1985).
  12. Berberian S. K., Baer * -Rings, Springer-Verlag, Berlin (1972).
  13. Bigard A., Keimel K., and Wolfenstein S., Groupes et Anneaux Réticulés [in French], Springer-Verlag, Berlin etc. (1977).
  14. Birkhoff G., Lattice Theory, Amer. Math. Soc., Providence (1967).
  15. Blumenthal L. M., Theory and Applications of Distance Geometry, Clarendon Press, Oxford (1953).
  16. Boole G., An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, Dover, New York (1957).
  17. Boole G., Selected Manuscripts on Logic and Its Philosophy, Birkhäuser- Verlag, Basel (1997).
  18. Bourbaki N., Set Theory [in French], Hermann, Paris (1958).
  19. Bratteli O. and Robertson D., Operator Algebras and Quantum Statistical Mechanics. Vol. 1, Springer-Verlag, New York etc. (1982).
  20. Browder F. (ed.), Mathematical Developments Arising from Hilbert Prob- lems, Amer. Math. Soc., Providence (1976).
  21. Bucur I. and Deleanu A., Introduction to the Theory of Categories and Func- tors, Wiley Interscience, London etc. (1968).
  22. Bukhvalov A. V., "Order bounded operators in vector lattices and spaces of measurable functions," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1988, pp. 3-63. (Itogi Nauki i Tekhniki, 26.)
  23. Bukhvalov A. V., Veksler A. I., and Geȋler V. A., "Normed lattices," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1980, pp. 125-184. (Itogi Nauki i Tekhniki, 18.)
  24. Bukhvalov A. V., Veksler A. I., and Lozanovskiȋ G. Ya., "Banach lattices: some Banach aspects of the theory," Uspekhi Mat. Nauk, 34, No. 2, 137-183 (1979).
  25. Burden C. W. and Mulvey C. J., "Banach spaces in categories of sheaves," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1979, pp. 169-196.
  26. Cantor G., Works on Set Theory [in Russian], Nauka, Moscow (1985).
  27. Chang S. S. and Keisler H. J., Model Theory, North-Holland, Amsterdam etc. (1990).
  28. Chilin V. I., "Partially ordered involutive Baer algebras," in: Contemporary Problems of Mathematics. Newest Advances [in Russian], VINITI, Moscow, 27, 1985, pp. 99-128.
  29. Church A., Introduction to Mathematical Logic, Princeton University Press, Princeton (1956).
  30. Cohen P. J., Set Theory and the Continuum Hypothesis, Benjamin, New York etc. (1966).
  31. Cohen P. J., "On foundations of set theory," Uspekhi Mat. Nauk, 29, No. 5, 169-176 (1974).
  32. Ciesielski K., Set Theory for the Working Mathematician, Cambridge Uni- versity Press, Cambridge etc. (1997).
  33. Dales H. and Woodin W., An Introduction to Independence for Analysts, Cambridge University Press, Cambridge (1987).
  34. Day M., Normed Linear Spaces, Springer-Verlag, New York and Heidelberg (1973). References
  35. Diestel J., Geometry of Banach Spaces: Selected Topics, Springer-Verlag, Berlin etc. (1975).
  36. Diestel J. and Uhl J. J., Vector Measures, Amer. Math. Soc., Providence (1977).
  37. Dinculeanu N., Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin (1966).
  38. Dixmier J., C * -Algebras and Their Representations [in French], Gauthier- Villars, Paris (1964).
  39. Dixmier J., C * -Algebras, North-Holland, Amsterdam etc. (1977).
  40. Dixmier J., Algebras of Operators in Hilbert Space (Algebras of von Neu- mann) [in French], Gauthier-Villars, Paris (1996).
  41. Dragalin A. G., "An explicit Boolean-valued model for nonstandard arith- metic," Publ. Math. Debrecen, 42, No. 3-4, 369-389 (1993).
  42. Dunford N. and Schwartz J. T., Linear Operators. Vol. 1: General Theory, John Wiley & Sons, New York (1988).
  43. Dunford N. and Schwartz J. T., Linear Operators. Vol. 2: Spectral Theory. Selfadjoint Operators in Hilbert Space, John Wiley & Sons, New York (1988).
  44. Dunford N. and Schwartz J. T., Linear Operators. Vol. 3: Spectral Operators, John Wiley & Sons, New York (1988).
  45. Eda K., "Boolean power and a direct product of abelian groups," Tsukuba J. Math., 6, No. 2, 187-194 (1982).
  46. Eda K., "On a Boolean power of a torsion free abelian group," J. Algebra, 82, No. 1, 84-93 (1983).
  47. Ellis D., "Geometry in abstract distance spaces," Publ. Math. Debrecen, 2, 1-25 (1951).
  48. Ershov Yu. L. and Palyutin E. A., Mathematical Logic [in Russian], Nauka, Moscow (1987).
  49. Espanol L., "Dimension of Boolean valued lattices and rings," J. Pure Appl. Algebra, No. 42, 223-236 (1986).
  50. Faith C., Algebra: Rings, Modules and Categories. Vol. 1, Springer-Verlag, Berlin etc. (1981).
  51. Foster A. L., "Generalized 'Boolean' theory of universal algebras. I. Subdirect sums and normal representation theorems," Math. Z., 58, No. 3, 306-336 (1953).
  52. Foster A. L., "Generalized 'Boolean' theory of universal algebras. II. Identities and subdirect sums of functionally complete algebras," Math. Z., 59, No. 2, 191-199 (1953).
  53. Fourman M. P., "The logic of toposes," in: Handbook of Mathematical Logic, North-Holland, Amsterdam (1977).
  54. Fourman M. P. and Scott D. S., "Sheaves and logic," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1979, pp. 302-401.
  55. Fraenkel A. and Bar-Hillel I., Foundations of Set Theory, North-Holland, Amsterdam (1958).
  56. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford (1963).
  57. Georgescu G. and Voiculescu I., "Eastern model theory for Boolean-valued theories," Z. Math. Logik Grundlag. Math., No. 31, 79-88 (1985).
  58. Gödel K.,"What is Cantor's continuum problem," Amer. Math. Monthly, 54, No. 9, 515-525 (1947).
  59. Gödel K., "Compatibility of the axiom of choice and the generalized continu- um hypothesis with the axioms of set theory," Uspekhi Mat. Nauk, 8, No. 1, 96-149 (1948).
  60. Goldblatt R., Toposes. Categorical Analysis of Logic, North-Holland, Ams- terdam etc. (1979).
  61. Goodearl K. R., Von Neumann Regular Rings, Pitman, London (1979).
  62. Gordon E. I., "Real numbers in Boolean-valued models of set theory and K-spaces," Dokl. Akad. Nauk SSSR, 237, No. 4, 773-775 (1977).
  63. Gordon E. I., "K-spaces in Boolean-valued models of set theory," Dokl. Akad. Nauk SSSR, 258, No. 4, 777-780 (1981).
  64. Gordon E. I., "To the theorems of identity preservation in K-spaces," Sibirsk. Mat. Zh., 23, No. 5, 55-65 (1982).
  65. Gordon E. I., Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory, Gor kiȋ, VINITI, No. 3286-83 Dep (1983).
  66. Gordon E. I., Elements of Boolean Valued Analysis [in Russian], Gor kiȋ State University, Gor kiȋ (1991).
  67. Gordon E. I. and Lyubetskiȋ V. A., "Some applications of nonstandard analy- sis in the theory of Boolean valued measures," Dokl. Akad. Nauk SSSR, 256, No. 5, 1037-1041 (1981).
  68. Gordon E. I. and Morozov S. F., Boolean Valued Models of Set Theory [in Russian], Gor kiȋ State University, Gor kiȋ (1982).
  69. Grätzer G., General Lattice Theory, Birkhäuser-Verlag, Basel (1978).
  70. Grayson R. J., "Heyting-valued models for intuitionistic set theory," in: Ap- plications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1977.
  71. Gutman A. E., "Banach fibering in lattice normed space theory," in: Lin- ear Operators Compatible with Order [in Russian], Sobolev Institute Press, References
  72. Novosibirsk, 1995, pp. 63-211.
  73. Gutman A. E., "Locally one-dimensional K-spaces and σ-distributive Boolean algebras," Siberian Adv. Math., 5, No. 2, 99-121 (1995).
  74. Hallet M., Cantorian Set Theory and Limitation of Size, Clarendon Press, Oxford (1984).
  75. Halmos P. R., Lectures on Boolean Algebras, Van Nostrand, Toronto etc. (1963).
  76. Hanshe-Olsen H. and Störmer E., Jordan Operator Algebras, Pitman Publ., Boston etc. (1984).
  77. Hernandez E. G., "Boolean-valued models of set theory with automorphisms," Z. Math. Logik Grundlag. Math., 32, No. 2, 117-130 (1986).
  78. Hilbert D. and Bernays P., Foundations of Mathematics. Logical Calculi and the Formalization of Arithmetic [in Russian], Nauka, Moscow (1979).
  79. Hoehle U., "Almost everywhere convergence and Boolean-valued topologies," in: Topology, Proc. 5th Int. Meet., Lecce/Italy 1990, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 29, 1992, pp. 215-227.
  80. Hofstedter D. R., Gödel, Escher, Bach: an Eternal Golden Braid, Vintage Books, New York (1980).
  81. Horiguchi H., "A definition of the category of Boolean-valued models," Com- ment. Math. Univ. St. Paul., 30, No. 2, 135-147 (1981).
  82. Horiguchi H., "The category of Boolean-valued models and its applications," Comment. Math. Univ. St. Paul., 34, No. 1, 71-89 (1985).
  83. Ionescu Tulcea A. and Ionescu Tulcea C., Topics in the Theory of Lifting, Springer-Verlag, Berlin etc. (1969).
  84. Jech T. J., Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Springer-Verlag, Berlin (1971).
  85. Jech T. J., The Axiom of Choice, North-Holland, Amsterdam etc. (1973).
  86. Jech T. J., "Abstract theory of abelian operator algebras: an application of forcing," Trans. Amer. Math. Soc., 289, No. 1, 133-162 (1985).
  87. Jech T. J., "First order theory of complete Stonean algebras (Boolean-valued real and complex numbers)," Canad. Math. Bull., 30, No. 4, 385-392 (1987).
  88. Jech T. J., "Boolean-linear spaces," Adv. in Math., 81, No. 2, 117-197 (1990).
  89. Jech T. J., Set Theory, Springer-Verlag, Berlin etc. (1997).
  90. Johnstone P. T., Topos Theory, Academic Press, London etc. (1977).
  91. Johnstone P. T., Stone Spaces, Cambridge University Press, Cambridge (1982).
  92. de Jonge E. and van Rooij A. C. M., Introduction to Riesz Spaces, Mathe- matisch Centrum, Amsterdam (1977).
  93. Jordan P., von Neumann J., and Wigner E., "On an algebraic generalization of the quantum mechanic formalism," Ann. Math., 35, 29-64 (1944).
  94. Judah H. (ed.), Set Theory of the Reals, Bar-Ilan University, Ramat-Gan (1993).
  95. Just W. and Weese M., Discovering Modern Set Theory. The Basics, Amer. Math. Soc., Providence (1996).
  96. Kadison R. V. and Ringrose J. R. Fundamentals of the Theory of Operator Algebras.-Vol. 1, 2.-Providence, RI: Amer. Math. Soc., 1997. Vol. 3, 4.- Boston: Birkhäuser Boston, 1991-1992.
  97. Kantorovich L. V., "On semi-ordered linear spaces and their applications to the theory of linear operations," Dokl. Akad. Nauk SSSR, 4, No. 1-2, 11-14 (1935).
  98. Kantorovich L. V., "On some classes of linear operations," Dokl. Akad. Nauk SSSR, 3, No. 1, 9-13 (1936).
  99. Kantorovich L. V., "General forms of some classes of linear operations," Dokl. Akad. Nauk SSSR, 3, No. 9, 101-106 (1936).
  100. Kantorovich L. V., "On one class of functional equations," Dokl. Akad. Nauk SSSR, 4, No. 5, 211-216 (1936).
  101. Kantorovich L. V., "To the general theory of operations in semi-ordered spa- ces," Dokl. Akad. Nauk SSSR, 1, No. 7, 271-274 (1936).
  102. Kantorovich L. V., "On functional equations," Transactions of Leningrad State University, 3, No. 7, 17-33 (1937).
  103. Kantorovich L. V., Selected Works. Part 1, Gordon and Breach, London etc. (1996).
  104. Kantorovich L. V. and Akilov G. P., Functional Analysis, Pergamon Press, Oxford and New York (1982).
  105. Kantorovich L. V., Vulikh B. Z., and Pinsker A. G., Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow and Leningrad (1950).
  106. Kaplansky I., "Projections in Banach algebras," Ann. of Math. (2), 53, 235- 249 (1951).
  107. Kaplansky I., "Algebras of type I," Ann. of Math. (2), 56, 460-472 (1952).
  108. Kaplansky I., "Modules over operator algebras," Amer. J. Math., 75, No. 4, 839-858 (1953).
  109. Kleene S., Mathematical Logic, John Wiley & Sons, New York etc. (1967).
  110. Kolesnikov E. V., Kusraev A. G., and Malyugin S. A., On Dominated Oper- ators [Preprint], Institute of Mathematics, Novosibirsk (1988).
  111. Kollatz L., Functional Analysis and Numerical Mathematics [in German], Springer-Verlag, Berlin etc. (1964).
  112. Kopytov V. M., Lattice Ordered Groups [in Russian], Nauka, Moscow (1984).
  113. Korol A. I. and Chilin V. I., "Measurable operators in a Boolean valued model of set theory," Dokl. Akad. Nauk UzSSR, No. 3, 7-9 (1989). References
  114. Kramosil I., "Comparing alternative definitions of Boolean-valued fuzzy sets," Kybernetika, 28, No. 6, 425-443 (1992).
  115. Krasnosel skiȋ M. A., Positive Solutions to Operator Equations. Chapters of Nonlinear Analysis [in Russian], Fizmatgiz, Moscow (1962).
  116. Kuratowski K. and Mostowski A., Set Theory, North-Holland, Amsterdam etc. (1967).
  117. Kusraev A. G., Some Applications of the Theory of Boolean Valued Models in Functional Analysis [Preprint], Institute of Mathematics, Novosibirsk (1982).
  118. Kusraev A. G., "General desintegration formulas," Dokl. Akad. Nauk SSSR, 265, No. 6, 1312-1316 (1982).
  119. Kusraev A. G., "Boolean valued analysis of duality between universally com- plete modules," Dokl. Akad. Nauk SSSR, 267, No. 5, 1049-1052 (1982).
  120. Kusraev A. G., "On some categories and functors of Boolean valued analysis," Dokl. Akad. Nauk SSSR, 271, No. 2, 283-286 (1983).
  121. Kusraev A. G., "On Boolean valued convex analysis," in: Mathematische Optimiering. Theorie und Anwendungen, Wartburg/Eisenach, 1983, pp. 106- 109.
  122. Kusraev A. G., "Order continuous functionals in Boolean valued models of set theory," Sibirsk. Mat. Zh., 25, No. 1, 69-79 (1984).
  123. Kusraev A. G., "On Banach-Kantorovich spaces," Sibirsk. Mat. Zh., 26, No. 2, 119-126 (1985).
  124. Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).
  125. Kusraev A. G., "Numerical systems in Boolean-valued models of set theory," in: Proceedings of the VIII All-Union Conference in Mathematical Logic (Moscow), Moscow, 1986, p. 99.
  126. Kusraev A. G., "Linear operators in lattice-normed spaces," in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84-123.
  127. Kusraev A. G., "On function representation of type I AW * -algebras," Sibirsk. Mat. Zh., 32, No. 3, 78-88 (1991).
  128. Kusraev A. G., "Boolean valued analysis and JB-algebras," Sibirsk. Mat. Zh., 35, No. 1, 124-134 (1994).
  129. Kusraev A. G., "Dominated operators," in: Linear Operators Compatible with Order [in Russian], Sobolev Institute Press, Novosibirsk, 1995, pp. 212- 292.
  130. Kusraev A. G., Boolean Valued Analysis of Duality Between Involutive Ba- nach Algebras [in Russian], North Ossetian University Press, Vladikavkaz (1996).
  131. Kusraev A. G. and Kutateladze S. S.,"Analysis of subdifferentials by means of Boolean valued models," Dokl. Akad. Nauk SSSR, 265, No. 5, 1061-1064 (1982).
  132. Kusraev A. G. and Kutateladze S. S., Notes on Boolean Valued Analysis [in Russian], Novosibirsk University Press, Novosibirsk (1984).
  133. Kusraev A. G. and Kutateladze S. S., "Nonstandard methods for Kantorovich spaces," Siberian Adv. Math., 2, No. 2, 114-152 (1992).
  134. Kusraev A. G. and Kutateladze S. S., "Nonstandard methods in geometric functional analysis," Amer. Math. Soc. Transl. Ser. 2, 151, 91-105 (1992).
  135. Kusraev A. G. and Kutateladze S. S., "Boolean-valued introduction to the theory of vector lattices," Amer. Math. Soc. Transl. Ser. 2, 163, 103-126 (1992).
  136. Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis [in Russian], Nauka, Novosibirsk (1990); [Translation into English] Kluwer Academic Publishers, Dordrecht (1994).
  137. Kusraev A. G. and Kutateladze S. S., "Nonstandard methods in functional analysis," in: Interaction Between Functional Analysis, Harmonic Analysis, and Probability Theory, Marcel Dekker, New York, 1995, pp. 301-306.
  138. Kusraev A. G. and Kutateladze S. S., Subdifferentials: Theory and Appli- cations [in Russian], Nauka, Novosibirsk (1992); [Translation into English] Kluwer Academic Publishers, Dordrecht (1995).
  139. Kusraev A. G. and Malyugin S. A., Some Questions of the Theory of Vector Measures [in Russian], Institute of Mathematics, Novosibirsk (1978).
  140. Kusraev A. G. and Malyugin S. A., "On atomic decomposition for vector measures," Sibirsk. Mat. Zh., 30, No. 5, 101-110 (1989).
  141. Kusraev A. G. and Strizhevskiȋ V. Z., "Lattice normed spaces and dominated operators," in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132-158.
  142. Kutateladze S. S., "Descents and ascents," Dokl. Akad. Nauk SSSR, 272, No. 3, 521-524 (1983).
  143. Kutateladze S. S., "On the technique of descending and ascending," Opti- mization, 33, 17-43 (1983).
  144. Kutateladze S. S., "Cyclic monads and their applications," Sibirsk. Mat. Zh., 27, No. 1, 100-110 (1986).
  145. Kutateladze S. S., "Monads of ultrafilters and extensional filters," Sibirsk. Mat. Zh., 30, No. 1, 129-133 (1989).
  146. Kutateladze S. S., "On fragments of positive operators," Sibirsk. Mat. Zh., 30, No. 5, 111-119 (1989).
  147. Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht (1996). References
  148. Kutateladze S. S., "Nonstandard tools for convex analysis," Math. Japon., 43, No. 2, 391-410 (1996).
  149. Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Kluwer Aca- demic Publishers, Dordrecht (1996).
  150. Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer- Verlag, Berlin etc. (1974).
  151. Lambek J., Lectures on Rings and Modules, Blaisdell, Waltham (1966).
  152. Larsen R., Banach Algebras: an Introduction, Dekker, New York (1973).
  153. Levin V. L., Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics [in Russian], Nauka, Moscow (1985).
  154. Levy A., Basic Set Theory, Springer-Verlag, Berlin etc. (1979).
  155. Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. Vol. 2: Function Spaces, Springer-Verlag, Berlin etc. (1979).
  156. Li N., "The Boolean-valued model of the axiom system of GB," Chinese Sci. Bull., 36, No. 2, 99-102 (1991).
  157. Locher J. L. (ed.), The World of M. C. Escher, Abradale Press, New York (1988).
  158. Lowen R., "Mathematics and fuzziness," in: Fuzzy Sets Theory and Applica- tions (Louvain-la-Neuve, 1985), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 177, Reidel, Dordrecht, and Boston, 1986, pp. 3-38.
  159. Luxemburg W. A. J. and Zaanen A. C., Riesz Spaces. Vol. 1, North-Holland, Amsterdam and London (1971).
  160. Luzin N. N., "Real function theory: state of the art," in: Proceedings of the All-Russian Congress of Mathematicians (Moscow, April 27-May 4, 1927), Glavnauka, Moscow and Leningrad, 1928, pp. 11-32.
  161. Lyubetskiȋ V. A., "On some algebraic problems of nonstandard analysis," Dokl. Akad. Nauk SSSR, 280, No. 1, 38-41 (1985).
  162. Lyubetskiȋ V. A. and Gordon E. I., "Boolean completion of uniformities," in: Studies on Nonclassical Logics and Formal Systems [in Russian], Nauka, Moscow, 1983, pp. 82-153.
  163. Lyubetskiȋ V. A. and Gordon E. I., Immersing bundles into a Heyting valued universe," Dokl. Akad. Nauk SSSR, 268, No. 4, 794-798 (1983).
  164. MacLane S., Categories for the Working Mathematician, Springer-Verlag, New York (1971).
  165. Maltsev A. I. Algebraic Systems. Posthumous Edition, Springer-Verlag, New York and Heidelberg (1973).
  166. Malykhin V. I., "New aspects in general topology pertaining to forcing," Uspekhi Mat. Nauk, 43, No. 4, 83-94 (1988).
  167. Manin Yu. I., A Course in Mathematical Logic, Springer-Verlag, Berlin etc. (1977).
  168. Melter R., "Boolean valued rings and Boolean metric spaces," Arch. Math., No. 15, 354-363 (1964).
  169. Mendelson E., Introduction to Mathematical Logic, Van Nostrand, Princeton etc. (1963).
  170. Milvay C. J., "Banach sheaves," J. Pure Appl. Algebra, 17, No. 1, 69-84 (1980).
  171. Molchanov I. S., "Set-valued estimators for mean bodies related to Boolean models," Statistics, 28, No. 1, 43-56 (1996).
  172. Monk J. D. and Bonnet R. (eds.), Handbook of Boolean Algebras. Vol. 1-3, North-Holland, Amsterdam etc. (1989).
  173. Mostowski A., Constructible Sets with Applications, North-Holland, Amster- dam (1969).
  174. Murphy G., C * -Algebras and Operator Theory, Academic Press, Boston, (1990).
  175. Naȋmark M. A., Normed Rings, Noordhoff, Groningen (1959).
  176. Namba K., "Formal systems and Boolean valued combinatorics," in: South- east Asian Conference on Logic (Singapore, 1981), pp. 115-132. Stud. Logic Found. Math., 111, North-Holland, Amsterdam and New York, 1983.
  177. von Neumann J., Collected Works. Vol. 3: Rings of Operators, Pergamon Press, New York etc. (1961).
  178. von Neumann J., Collected Works. Vol. 4: Continuous Geometry and Other Topics, Pergamon Press, Oxford etc. (1962).
  179. von Neumann J., Selected Works on Functional Analysis [in Russian], Nauka, Moscow (1987).
  180. Nishimura H., "An approach to the dimension theory of continuous geometry from the standpoint of Boolean valued analysis," Publ. Res. Inst. Math. Sci., 20, No. 5, 1091-1101 (1984).
  181. Nishimura H., "Boolean valued decomposition theory of states," Publ. Res. Inst. Math. Sci., 21, No. 5, 1051-1058 (1985).
  182. Nishimura H., "Heyting valued set theory and fibre bundles," Publ. Res. Inst. Math. Sci., 24, No. 2, 225-247 (1988).
  183. Nishimura H., "On the absoluteness of types in Boolean valued lattices," Z. Math. Logik Grundlag. Math., 36, No. 3, 241-246 (1990).
  184. Nishimura H., "Some connections between Boolean valued analysis and topo- logical reduction theory for C * -algebras," Z. Math. Logik Grundlag. Math., 36, No. 5, 471-479 (1990).
  185. Nishimura H., "Boolean valued Dedekind domains," Z. Math. Logik Grund- lag. Math., 37, No. 1, 65-76 (1991). References
  186. Nishimura H., "Boolean valued Lie algebras," J. Symbolic Logic, 56, No. 2, 731-741 (1991).
  187. Nishimura H., "Some Boolean valued commutative algebra," Z. Math. Logik Grundlag. Math., 37, No. 4, 367-384 (1991).
  188. Nishimura H., "Foundations of Boolean-valued algebraic geometry," Z. Math. Logik Grundlag. Math., 37, No. 5, 421-438 (1991).
  189. Nishimura H., "On a duality between Boolean valued analysis and topological reduction theory," Math. Logic Quart., 39, No. 1, 23-32 (1993).
  190. Nishimura H., "On the duality between Boolean-valued analysis and reduc- tion theory under the assumption of separability," Internat. J. Theoret. Phys., 32, No. 3, 443-488 (1993).
  191. Nishimura H., "A Boolean-valued approach to Gleason's theorem," Rep. Math. Phys., 34, No. 2, 125-132 (1994).
  192. Nishimura H., "Boolean valued and Stone algebra valued measure theories," Math. Logic Quart., 40, No. 1, 69-75 (1994).
  193. Novikov P. S., Constructive Mathematical Logic from the Point of View of Classical Logic [in Russian], Nauka, Moscow (1977).
  194. Ozawa M., "Boolean valued analysis and type I AW * -algebras," Proc. Japan Acad. Ser. A Math. Sci., 59A, No. 8, 368-371 (1983).
  195. Ozawa M., "Boolean valued interpretation of Hilbert space theory," J. Math. Soc. Japan, 35, No. 4, 609-627 (1983).
  196. Ozawa M., "A classification of type I AW * -algebras and Boolean valued anal- ysis," J. Math. Soc. Japan, 36, No. 4, 589-608 (1984).
  197. Ozawa M., "A transfer principle from von Neumann algebras to AW * -algeb- ras," J. London Math. Soc. (2), 32, No. 1, 141-148 (1985).
  198. Ozawa M., "Nonuniqueness of the cardinality attached to homogeneous AW * - algebras," Proc. Amer. Math. Soc., 93, 681-684 (1985).
  199. Ozawa M., "Boolean valued analysis approach to the trace problem of AW * - algebras," J. London Math. Soc. (2), 33, No. 2, 347-354 (1986).
  200. Ozawa M., "Embeddable AW * -algebras and regular completions," J. London Math. Soc., 34, No. 3, 511-523 (1986).
  201. Ozawa M., "Boolean-valued interpretation of Banach space theory and mod- ule structures of von Neumann algebras," Nagoya Math. J., 117, 1-36 (1990).
  202. Pedersen G. K., Analysis Now, Springer-Verlag, Berlin etc. (1995).
  203. Pinus A. G., Boolean Constructions in Universal Algebras, Kluwer Academic Publishers, Dordrecht etc. (1993).
  204. Pirce R. S., Modules over Commutative Regular Rings, Amer. Math. Soc., Providence (1967).
  205. Rasiowa E. and Sikorski R., The Mathematics of Metamathematics, PWN, Warsaw (1962).
  206. Rema P. S., "Boolean metrization and topological spaces," Math. Japon., 9, No. 9, 19-30 (1964).
  207. Repicky M., "Cardinal characteristics of the real line and Boolean-valued models," Comment. Math. Univ. Carolin., 33, No. 1, 184 (1992).
  208. Rickart Ch., General Theory of Banach Algebras, Van Nostrand, Princeton (1960).
  209. Rosser J. B., Logic for Mathematicians, New York etc., McGraw-Hill Book Company, (1953).
  210. Rosser J. B., Simplified Independence Proofs. Boolean Valued Models of Set Theory, Academic Press, New York and London (1969).
  211. Rudin W., Functional Analysis, McGraw-Hill, New York (1991).
  212. Sakai S. C * -algebras and W * -algebras, Springer-Verlag, Berlin etc. (1971).
  213. Saracino D. and Weispfenning V., "On algebraic curves over commutative regular rings," in: Model Theory and Algebra (a Memorial Tribute to Abra- ham Robinson), Springer-Verlag, New York etc., 1969.
  214. Sarymsakov T. A. et al., Ordered Algebras [in Russian], Fan, Tashkent (1983).
  215. Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc. (1974).
  216. Schröder J., "Das Iterationsverfahren bei allgemeinierem Abshtandsbegriff," Math. Z., 66, 111-116 (1956).
  217. Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig (1984).
  218. Shoenfield G. R., Mathematical Logic, Addison-Wesley, Reading (1967).
  219. Shoenfield G. R., "Axioms of set theory," in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977.
  220. Shotaev G. N., "On bilinear operators in lattice-normed spaces," Optimiza- tion, 37, 38-50 (1986).
  221. Sikorski R., Boolean Algebras, Springer-Verlag, Berlin etc. (1964).
  222. Sikorskiȋ M. R., "Some applications of Boolean-valued models to study oper- ators on polynormed spaces," Sov. Math., 33, No. 2, 106-110 (1989).
  223. Smith K., "Commutative regular rings and Boolean-valued fields," J. Sym- bolic Logic, 49, No. 1, 281-297 (1984).
  224. Sobolev V. I., "On a poset valued measure of a set, measurable functions, and some abstract integrals," Dokl. Akad. Nauk SSSR, 91, No. 1, 23-26 (1953).
  225. Solov ëv Yu. P. and Troitskiȋ E. V., C * -Algebras and Elliptic Operators in Differential Topology [in Russian], Factorial, Moscow (1996).
  226. Solovay R. M., "A model of set theory in which every set of reals is Lebesgue measurable," Ann. of Math. (2), 92, No. 2, 1-56 (1970).
  227. Solovay R. M., "Real-valued measurable cardinals," in: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. 13, Part 1, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, 1971, pp. 397-428. References
  228. Solovay R. and Tennenbaum S., "Iterated Cohen extensions and Souslin's problem," Ann. Math., 94, No. 2, 201-245 (1972).
  229. Spivak M. D., The Joy of T E X, Amer. Math. Soc., Providence (1990).
  230. Sunder V. S., An Invitation to von Neumann Algebras, Springer-Verlag, New York etc. (1987).
  231. Takesaki M., Theory of Operator Algebras. Vol. 1, Springer-Verlag, New York (1979).
  232. Takeuti G., Two Applications of Logic to Mathematics, Iwanami and Prince- ton University Press, Tokyo and Princeton (1978).
  233. Takeuti G., "A transfer principle in harmonic analysis," J. Symbolic Logic, 44, No. 3, 417-440 (1979).
  234. Takeuti G., "Boolean valued analysis," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ.
  235. Durham, Durham, 1977), Springer-Verlag, Berlin etc., 1979.
  236. Takeuti G., "Quantum set theory," in: Current Issues in Quantum Logic (Erice, 1979), Plenum, New York and London, 1981, pp. 303-322.
  237. Takeuti G., "Boolean completion and m-convergence," in: Categorical As- pects of Topology and Analysis (Ottawa, Ont., 1980), Springer-Verlag, Berlin etc., 1982, pp. 333-350.
  238. Takeuti G., "Von Neumann algebras and Boolean valued analysis," J. Math. Soc. Japan, 35, No. 1, 1-21 (1983).
  239. Takeuti G., "C * -algebras and Boolean valued analysis," Japan. J. Math. (N.S.), 9, No. 2, 207-246 (1983).
  240. Takeuti G. and Titani S., "Heyting-valued universes of intuitionistic set the- ory," in: Logic Symposia (Hakone, 1979/1980), Springer-Verlag, Berlin and New York, 1981, pp. 189-306.
  241. Takeuti G. and Titani S., "Globalization of intuitionistic set theory," Ann. Pure Appl. Logic, 33, No. 2, 195-211 (1987).
  242. Takeuti G. and Zaring W. M., Introduction to Axiomatic Set Theory, Sprin- ger-Verlag, New York etc. (1971).
  243. Takeuti G. and Zaring W. M., Axiomatic Set Theory, Springer-Verlag, New York (1973).
  244. Tkadlec J., "Boolean orthoposets and two-valued Jauch-Piron states," Tatra Mt. Math. Publ., No. 3, 155-160 (1993).
  245. Topping D. M., Jordan Algebras of Selfadjoint Operators, Amer. Math. Soc., Providence (1965).
  246. Tsalenko M. Sh. and Shul geȋfer E. F., Fundamentals of Category Theory [in Russian], Nauka, Moscow (1974).
  247. Veksler A. I., "On a new construction of the Dedekind completions of vector lattices and divisible l-groups," Sibirsk. Mat. Zh., 10, No. 6, 70-73 (1969).
  248. Veksler A. I., "Cyclic Banach spaces and Banach lattices," Dokl. Akad. Nauk SSSR, 213, No. 4, 770-773 (1973).
  249. Veksler A. I. and Geȋler V. A.,"On Dedekind and disjoint completeness of semiordered linear spaces," Sibirsk. Mat. Zh., 13, No. 1, 43-51 (1972).
  250. Venkataraman K., "Boolean valued almost periodic functions: existence of the mean," J. Indian Math. Soc. (N.S.), 43, No. 1-4, 275-283 (1979).
  251. Venkataraman K., "Boolean valued almost periodic functions on topological groups," J. Indian Math. Soc. (N.S.), 48, No. 1-4, 153-164 (1984).
  252. Vladimirov D. A., Boolean Algebras [in Russian], Nauka, Moscow (1969).
  253. Vopěnka P., "The limits of sheaves over extremally disconnected compact Hausdorff spaces," Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 15, No. 1, 1-4 (1967).
  254. Vopěnka P., "General theory of -models," Comment. Math. Univ. Carolin., 7, No. 1, 147-170 (1967).
  255. Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Noord- hoff, Groningen (1967).
  256. Wang Hao and McNaughton R., Axiomatic Systems of Set Theory [in French], Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1953).
  257. Wright J. D. M., "Vector lattice measures on locally compact spaces," Math. Z., 120, No. 3, 193-203 (1971).
  258. Yamaguchi J., "Boolean [0, 1]-valued continuous operators," Internat. J. Com- put. Math., 68, No. 1-2, 71-79 (1998).
  259. Yood B., Banach Algebras: an Introduction, Carleton University Press, Ot- tawa (1988).
  260. Zaanen A. C., Riesz Spaces. Vol. 2, North-Holland, Amsterdam etc. (1983).
  261. Zaanen A. C., Introduction to Operator Theory in Riesz Spaces, Springer- Verlag, Berlin etc. (1997).
  262. Zadeh L., The Concept of a Linguistic Variable and Its Application to Ap- proximate Reasoning, Elsevier, New York etc. (1973).
  263. Zhang Jin-wen, "A unified treatment of fuzzy set theory and Boolean valued set theory, fuzzy set structures and normal fuzzy set structures," J. Math. Anal. Appl., 76, No. 1, 297-301 (1980).
  264. Zhang Jin-wen, "Between fuzzy set theory and Boolean valued set theory," in: Fuzzy Information and Decision Processes, North-Holland, Amsterdam etc., 1982, pp. 143-147.