Boolean Valued Analysis
Abstract
AI
AI
Boolean valued analysis is a methodology for analyzing mathematical objects through comparisons in two set-theoretic models that utilize distinct Boolean algebras. This approach is rooted in nonstandard analysis and highlights the independence of the continuum hypothesis from Zermelo-Fraenkel set theory. The growing significance of Boolean valued analysis is tied to key proofs by Cohen and Gödel regarding the continuum hypothesis.
References (264)
- Akilov G. P. and Kutateladze S. S., Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).
- Alfsen E. M., Shultz F. W., and Störmer E., "A Gelfand-Neumark theorem for Jordan algebras," Adv. in Math., 28, No. 1, 11-56 (1978).
- Aliprantis C. D. and Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York etc. (1978).
- Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985).
- Arens R. F. and Kaplansky I., "Topological representation of algebras," Trans. Amer. Math. Soc., 63, No. 3, 457-481 (1948).
- Arveson W., An Invitation to C * -Algebras, Springer-Verlag, Berlin (1976).
- Ayupov S. A., "Jordan operator algebras," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1985, pp. 67-97. (Itogi Nauki i Tekhniki, 27.)
- Ayupov S. A., Classification and Representation of Ordered Jordan Algebras [in Russian], Fan, Tashkent (1986).
- Beȋdar K. I. and Mikhalëv A. V., "Orthogonal completeness and algebraic systems," Uspekhi Mat. Nauk, 40, No. 6, 79-115 (1985).
- Bell J. L. and Slomson A. B., Models and Ultraproducts: an Introduction, North-Holland, Amsterdam etc. (1969).
- Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc. (1985).
- Berberian S. K., Baer * -Rings, Springer-Verlag, Berlin (1972).
- Bigard A., Keimel K., and Wolfenstein S., Groupes et Anneaux Réticulés [in French], Springer-Verlag, Berlin etc. (1977).
- Birkhoff G., Lattice Theory, Amer. Math. Soc., Providence (1967).
- Blumenthal L. M., Theory and Applications of Distance Geometry, Clarendon Press, Oxford (1953).
- Boole G., An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, Dover, New York (1957).
- Boole G., Selected Manuscripts on Logic and Its Philosophy, Birkhäuser- Verlag, Basel (1997).
- Bourbaki N., Set Theory [in French], Hermann, Paris (1958).
- Bratteli O. and Robertson D., Operator Algebras and Quantum Statistical Mechanics. Vol. 1, Springer-Verlag, New York etc. (1982).
- Browder F. (ed.), Mathematical Developments Arising from Hilbert Prob- lems, Amer. Math. Soc., Providence (1976).
- Bucur I. and Deleanu A., Introduction to the Theory of Categories and Func- tors, Wiley Interscience, London etc. (1968).
- Bukhvalov A. V., "Order bounded operators in vector lattices and spaces of measurable functions," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1988, pp. 3-63. (Itogi Nauki i Tekhniki, 26.)
- Bukhvalov A. V., Veksler A. I., and Geȋler V. A., "Normed lattices," in: Mathematical Analysis [in Russian], VINITI, Moscow, 1980, pp. 125-184. (Itogi Nauki i Tekhniki, 18.)
- Bukhvalov A. V., Veksler A. I., and Lozanovskiȋ G. Ya., "Banach lattices: some Banach aspects of the theory," Uspekhi Mat. Nauk, 34, No. 2, 137-183 (1979).
- Burden C. W. and Mulvey C. J., "Banach spaces in categories of sheaves," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1979, pp. 169-196.
- Cantor G., Works on Set Theory [in Russian], Nauka, Moscow (1985).
- Chang S. S. and Keisler H. J., Model Theory, North-Holland, Amsterdam etc. (1990).
- Chilin V. I., "Partially ordered involutive Baer algebras," in: Contemporary Problems of Mathematics. Newest Advances [in Russian], VINITI, Moscow, 27, 1985, pp. 99-128.
- Church A., Introduction to Mathematical Logic, Princeton University Press, Princeton (1956).
- Cohen P. J., Set Theory and the Continuum Hypothesis, Benjamin, New York etc. (1966).
- Cohen P. J., "On foundations of set theory," Uspekhi Mat. Nauk, 29, No. 5, 169-176 (1974).
- Ciesielski K., Set Theory for the Working Mathematician, Cambridge Uni- versity Press, Cambridge etc. (1997).
- Dales H. and Woodin W., An Introduction to Independence for Analysts, Cambridge University Press, Cambridge (1987).
- Day M., Normed Linear Spaces, Springer-Verlag, New York and Heidelberg (1973). References
- Diestel J., Geometry of Banach Spaces: Selected Topics, Springer-Verlag, Berlin etc. (1975).
- Diestel J. and Uhl J. J., Vector Measures, Amer. Math. Soc., Providence (1977).
- Dinculeanu N., Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin (1966).
- Dixmier J., C * -Algebras and Their Representations [in French], Gauthier- Villars, Paris (1964).
- Dixmier J., C * -Algebras, North-Holland, Amsterdam etc. (1977).
- Dixmier J., Algebras of Operators in Hilbert Space (Algebras of von Neu- mann) [in French], Gauthier-Villars, Paris (1996).
- Dragalin A. G., "An explicit Boolean-valued model for nonstandard arith- metic," Publ. Math. Debrecen, 42, No. 3-4, 369-389 (1993).
- Dunford N. and Schwartz J. T., Linear Operators. Vol. 1: General Theory, John Wiley & Sons, New York (1988).
- Dunford N. and Schwartz J. T., Linear Operators. Vol. 2: Spectral Theory. Selfadjoint Operators in Hilbert Space, John Wiley & Sons, New York (1988).
- Dunford N. and Schwartz J. T., Linear Operators. Vol. 3: Spectral Operators, John Wiley & Sons, New York (1988).
- Eda K., "Boolean power and a direct product of abelian groups," Tsukuba J. Math., 6, No. 2, 187-194 (1982).
- Eda K., "On a Boolean power of a torsion free abelian group," J. Algebra, 82, No. 1, 84-93 (1983).
- Ellis D., "Geometry in abstract distance spaces," Publ. Math. Debrecen, 2, 1-25 (1951).
- Ershov Yu. L. and Palyutin E. A., Mathematical Logic [in Russian], Nauka, Moscow (1987).
- Espanol L., "Dimension of Boolean valued lattices and rings," J. Pure Appl. Algebra, No. 42, 223-236 (1986).
- Faith C., Algebra: Rings, Modules and Categories. Vol. 1, Springer-Verlag, Berlin etc. (1981).
- Foster A. L., "Generalized 'Boolean' theory of universal algebras. I. Subdirect sums and normal representation theorems," Math. Z., 58, No. 3, 306-336 (1953).
- Foster A. L., "Generalized 'Boolean' theory of universal algebras. II. Identities and subdirect sums of functionally complete algebras," Math. Z., 59, No. 2, 191-199 (1953).
- Fourman M. P., "The logic of toposes," in: Handbook of Mathematical Logic, North-Holland, Amsterdam (1977).
- Fourman M. P. and Scott D. S., "Sheaves and logic," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1979, pp. 302-401.
- Fraenkel A. and Bar-Hillel I., Foundations of Set Theory, North-Holland, Amsterdam (1958).
- Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford (1963).
- Georgescu G. and Voiculescu I., "Eastern model theory for Boolean-valued theories," Z. Math. Logik Grundlag. Math., No. 31, 79-88 (1985).
- Gödel K.,"What is Cantor's continuum problem," Amer. Math. Monthly, 54, No. 9, 515-525 (1947).
- Gödel K., "Compatibility of the axiom of choice and the generalized continu- um hypothesis with the axioms of set theory," Uspekhi Mat. Nauk, 8, No. 1, 96-149 (1948).
- Goldblatt R., Toposes. Categorical Analysis of Logic, North-Holland, Ams- terdam etc. (1979).
- Goodearl K. R., Von Neumann Regular Rings, Pitman, London (1979).
- Gordon E. I., "Real numbers in Boolean-valued models of set theory and K-spaces," Dokl. Akad. Nauk SSSR, 237, No. 4, 773-775 (1977).
- Gordon E. I., "K-spaces in Boolean-valued models of set theory," Dokl. Akad. Nauk SSSR, 258, No. 4, 777-780 (1981).
- Gordon E. I., "To the theorems of identity preservation in K-spaces," Sibirsk. Mat. Zh., 23, No. 5, 55-65 (1982).
- Gordon E. I., Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory, Gor kiȋ, VINITI, No. 3286-83 Dep (1983).
- Gordon E. I., Elements of Boolean Valued Analysis [in Russian], Gor kiȋ State University, Gor kiȋ (1991).
- Gordon E. I. and Lyubetskiȋ V. A., "Some applications of nonstandard analy- sis in the theory of Boolean valued measures," Dokl. Akad. Nauk SSSR, 256, No. 5, 1037-1041 (1981).
- Gordon E. I. and Morozov S. F., Boolean Valued Models of Set Theory [in Russian], Gor kiȋ State University, Gor kiȋ (1982).
- Grätzer G., General Lattice Theory, Birkhäuser-Verlag, Basel (1978).
- Grayson R. J., "Heyting-valued models for intuitionistic set theory," in: Ap- plications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Springer-Verlag, Berlin, 1977.
- Gutman A. E., "Banach fibering in lattice normed space theory," in: Lin- ear Operators Compatible with Order [in Russian], Sobolev Institute Press, References
- Novosibirsk, 1995, pp. 63-211.
- Gutman A. E., "Locally one-dimensional K-spaces and σ-distributive Boolean algebras," Siberian Adv. Math., 5, No. 2, 99-121 (1995).
- Hallet M., Cantorian Set Theory and Limitation of Size, Clarendon Press, Oxford (1984).
- Halmos P. R., Lectures on Boolean Algebras, Van Nostrand, Toronto etc. (1963).
- Hanshe-Olsen H. and Störmer E., Jordan Operator Algebras, Pitman Publ., Boston etc. (1984).
- Hernandez E. G., "Boolean-valued models of set theory with automorphisms," Z. Math. Logik Grundlag. Math., 32, No. 2, 117-130 (1986).
- Hilbert D. and Bernays P., Foundations of Mathematics. Logical Calculi and the Formalization of Arithmetic [in Russian], Nauka, Moscow (1979).
- Hoehle U., "Almost everywhere convergence and Boolean-valued topologies," in: Topology, Proc. 5th Int. Meet., Lecce/Italy 1990, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 29, 1992, pp. 215-227.
- Hofstedter D. R., Gödel, Escher, Bach: an Eternal Golden Braid, Vintage Books, New York (1980).
- Horiguchi H., "A definition of the category of Boolean-valued models," Com- ment. Math. Univ. St. Paul., 30, No. 2, 135-147 (1981).
- Horiguchi H., "The category of Boolean-valued models and its applications," Comment. Math. Univ. St. Paul., 34, No. 1, 71-89 (1985).
- Ionescu Tulcea A. and Ionescu Tulcea C., Topics in the Theory of Lifting, Springer-Verlag, Berlin etc. (1969).
- Jech T. J., Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Springer-Verlag, Berlin (1971).
- Jech T. J., The Axiom of Choice, North-Holland, Amsterdam etc. (1973).
- Jech T. J., "Abstract theory of abelian operator algebras: an application of forcing," Trans. Amer. Math. Soc., 289, No. 1, 133-162 (1985).
- Jech T. J., "First order theory of complete Stonean algebras (Boolean-valued real and complex numbers)," Canad. Math. Bull., 30, No. 4, 385-392 (1987).
- Jech T. J., "Boolean-linear spaces," Adv. in Math., 81, No. 2, 117-197 (1990).
- Jech T. J., Set Theory, Springer-Verlag, Berlin etc. (1997).
- Johnstone P. T., Topos Theory, Academic Press, London etc. (1977).
- Johnstone P. T., Stone Spaces, Cambridge University Press, Cambridge (1982).
- de Jonge E. and van Rooij A. C. M., Introduction to Riesz Spaces, Mathe- matisch Centrum, Amsterdam (1977).
- Jordan P., von Neumann J., and Wigner E., "On an algebraic generalization of the quantum mechanic formalism," Ann. Math., 35, 29-64 (1944).
- Judah H. (ed.), Set Theory of the Reals, Bar-Ilan University, Ramat-Gan (1993).
- Just W. and Weese M., Discovering Modern Set Theory. The Basics, Amer. Math. Soc., Providence (1996).
- Kadison R. V. and Ringrose J. R. Fundamentals of the Theory of Operator Algebras.-Vol. 1, 2.-Providence, RI: Amer. Math. Soc., 1997. Vol. 3, 4.- Boston: Birkhäuser Boston, 1991-1992.
- Kantorovich L. V., "On semi-ordered linear spaces and their applications to the theory of linear operations," Dokl. Akad. Nauk SSSR, 4, No. 1-2, 11-14 (1935).
- Kantorovich L. V., "On some classes of linear operations," Dokl. Akad. Nauk SSSR, 3, No. 1, 9-13 (1936).
- Kantorovich L. V., "General forms of some classes of linear operations," Dokl. Akad. Nauk SSSR, 3, No. 9, 101-106 (1936).
- Kantorovich L. V., "On one class of functional equations," Dokl. Akad. Nauk SSSR, 4, No. 5, 211-216 (1936).
- Kantorovich L. V., "To the general theory of operations in semi-ordered spa- ces," Dokl. Akad. Nauk SSSR, 1, No. 7, 271-274 (1936).
- Kantorovich L. V., "On functional equations," Transactions of Leningrad State University, 3, No. 7, 17-33 (1937).
- Kantorovich L. V., Selected Works. Part 1, Gordon and Breach, London etc. (1996).
- Kantorovich L. V. and Akilov G. P., Functional Analysis, Pergamon Press, Oxford and New York (1982).
- Kantorovich L. V., Vulikh B. Z., and Pinsker A. G., Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow and Leningrad (1950).
- Kaplansky I., "Projections in Banach algebras," Ann. of Math. (2), 53, 235- 249 (1951).
- Kaplansky I., "Algebras of type I," Ann. of Math. (2), 56, 460-472 (1952).
- Kaplansky I., "Modules over operator algebras," Amer. J. Math., 75, No. 4, 839-858 (1953).
- Kleene S., Mathematical Logic, John Wiley & Sons, New York etc. (1967).
- Kolesnikov E. V., Kusraev A. G., and Malyugin S. A., On Dominated Oper- ators [Preprint], Institute of Mathematics, Novosibirsk (1988).
- Kollatz L., Functional Analysis and Numerical Mathematics [in German], Springer-Verlag, Berlin etc. (1964).
- Kopytov V. M., Lattice Ordered Groups [in Russian], Nauka, Moscow (1984).
- Korol A. I. and Chilin V. I., "Measurable operators in a Boolean valued model of set theory," Dokl. Akad. Nauk UzSSR, No. 3, 7-9 (1989). References
- Kramosil I., "Comparing alternative definitions of Boolean-valued fuzzy sets," Kybernetika, 28, No. 6, 425-443 (1992).
- Krasnosel skiȋ M. A., Positive Solutions to Operator Equations. Chapters of Nonlinear Analysis [in Russian], Fizmatgiz, Moscow (1962).
- Kuratowski K. and Mostowski A., Set Theory, North-Holland, Amsterdam etc. (1967).
- Kusraev A. G., Some Applications of the Theory of Boolean Valued Models in Functional Analysis [Preprint], Institute of Mathematics, Novosibirsk (1982).
- Kusraev A. G., "General desintegration formulas," Dokl. Akad. Nauk SSSR, 265, No. 6, 1312-1316 (1982).
- Kusraev A. G., "Boolean valued analysis of duality between universally com- plete modules," Dokl. Akad. Nauk SSSR, 267, No. 5, 1049-1052 (1982).
- Kusraev A. G., "On some categories and functors of Boolean valued analysis," Dokl. Akad. Nauk SSSR, 271, No. 2, 283-286 (1983).
- Kusraev A. G., "On Boolean valued convex analysis," in: Mathematische Optimiering. Theorie und Anwendungen, Wartburg/Eisenach, 1983, pp. 106- 109.
- Kusraev A. G., "Order continuous functionals in Boolean valued models of set theory," Sibirsk. Mat. Zh., 25, No. 1, 69-79 (1984).
- Kusraev A. G., "On Banach-Kantorovich spaces," Sibirsk. Mat. Zh., 26, No. 2, 119-126 (1985).
- Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).
- Kusraev A. G., "Numerical systems in Boolean-valued models of set theory," in: Proceedings of the VIII All-Union Conference in Mathematical Logic (Moscow), Moscow, 1986, p. 99.
- Kusraev A. G., "Linear operators in lattice-normed spaces," in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84-123.
- Kusraev A. G., "On function representation of type I AW * -algebras," Sibirsk. Mat. Zh., 32, No. 3, 78-88 (1991).
- Kusraev A. G., "Boolean valued analysis and JB-algebras," Sibirsk. Mat. Zh., 35, No. 1, 124-134 (1994).
- Kusraev A. G., "Dominated operators," in: Linear Operators Compatible with Order [in Russian], Sobolev Institute Press, Novosibirsk, 1995, pp. 212- 292.
- Kusraev A. G., Boolean Valued Analysis of Duality Between Involutive Ba- nach Algebras [in Russian], North Ossetian University Press, Vladikavkaz (1996).
- Kusraev A. G. and Kutateladze S. S.,"Analysis of subdifferentials by means of Boolean valued models," Dokl. Akad. Nauk SSSR, 265, No. 5, 1061-1064 (1982).
- Kusraev A. G. and Kutateladze S. S., Notes on Boolean Valued Analysis [in Russian], Novosibirsk University Press, Novosibirsk (1984).
- Kusraev A. G. and Kutateladze S. S., "Nonstandard methods for Kantorovich spaces," Siberian Adv. Math., 2, No. 2, 114-152 (1992).
- Kusraev A. G. and Kutateladze S. S., "Nonstandard methods in geometric functional analysis," Amer. Math. Soc. Transl. Ser. 2, 151, 91-105 (1992).
- Kusraev A. G. and Kutateladze S. S., "Boolean-valued introduction to the theory of vector lattices," Amer. Math. Soc. Transl. Ser. 2, 163, 103-126 (1992).
- Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis [in Russian], Nauka, Novosibirsk (1990); [Translation into English] Kluwer Academic Publishers, Dordrecht (1994).
- Kusraev A. G. and Kutateladze S. S., "Nonstandard methods in functional analysis," in: Interaction Between Functional Analysis, Harmonic Analysis, and Probability Theory, Marcel Dekker, New York, 1995, pp. 301-306.
- Kusraev A. G. and Kutateladze S. S., Subdifferentials: Theory and Appli- cations [in Russian], Nauka, Novosibirsk (1992); [Translation into English] Kluwer Academic Publishers, Dordrecht (1995).
- Kusraev A. G. and Malyugin S. A., Some Questions of the Theory of Vector Measures [in Russian], Institute of Mathematics, Novosibirsk (1978).
- Kusraev A. G. and Malyugin S. A., "On atomic decomposition for vector measures," Sibirsk. Mat. Zh., 30, No. 5, 101-110 (1989).
- Kusraev A. G. and Strizhevskiȋ V. Z., "Lattice normed spaces and dominated operators," in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132-158.
- Kutateladze S. S., "Descents and ascents," Dokl. Akad. Nauk SSSR, 272, No. 3, 521-524 (1983).
- Kutateladze S. S., "On the technique of descending and ascending," Opti- mization, 33, 17-43 (1983).
- Kutateladze S. S., "Cyclic monads and their applications," Sibirsk. Mat. Zh., 27, No. 1, 100-110 (1986).
- Kutateladze S. S., "Monads of ultrafilters and extensional filters," Sibirsk. Mat. Zh., 30, No. 1, 129-133 (1989).
- Kutateladze S. S., "On fragments of positive operators," Sibirsk. Mat. Zh., 30, No. 5, 111-119 (1989).
- Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht (1996). References
- Kutateladze S. S., "Nonstandard tools for convex analysis," Math. Japon., 43, No. 2, 391-410 (1996).
- Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Kluwer Aca- demic Publishers, Dordrecht (1996).
- Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer- Verlag, Berlin etc. (1974).
- Lambek J., Lectures on Rings and Modules, Blaisdell, Waltham (1966).
- Larsen R., Banach Algebras: an Introduction, Dekker, New York (1973).
- Levin V. L., Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics [in Russian], Nauka, Moscow (1985).
- Levy A., Basic Set Theory, Springer-Verlag, Berlin etc. (1979).
- Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. Vol. 2: Function Spaces, Springer-Verlag, Berlin etc. (1979).
- Li N., "The Boolean-valued model of the axiom system of GB," Chinese Sci. Bull., 36, No. 2, 99-102 (1991).
- Locher J. L. (ed.), The World of M. C. Escher, Abradale Press, New York (1988).
- Lowen R., "Mathematics and fuzziness," in: Fuzzy Sets Theory and Applica- tions (Louvain-la-Neuve, 1985), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 177, Reidel, Dordrecht, and Boston, 1986, pp. 3-38.
- Luxemburg W. A. J. and Zaanen A. C., Riesz Spaces. Vol. 1, North-Holland, Amsterdam and London (1971).
- Luzin N. N., "Real function theory: state of the art," in: Proceedings of the All-Russian Congress of Mathematicians (Moscow, April 27-May 4, 1927), Glavnauka, Moscow and Leningrad, 1928, pp. 11-32.
- Lyubetskiȋ V. A., "On some algebraic problems of nonstandard analysis," Dokl. Akad. Nauk SSSR, 280, No. 1, 38-41 (1985).
- Lyubetskiȋ V. A. and Gordon E. I., "Boolean completion of uniformities," in: Studies on Nonclassical Logics and Formal Systems [in Russian], Nauka, Moscow, 1983, pp. 82-153.
- Lyubetskiȋ V. A. and Gordon E. I., Immersing bundles into a Heyting valued universe," Dokl. Akad. Nauk SSSR, 268, No. 4, 794-798 (1983).
- MacLane S., Categories for the Working Mathematician, Springer-Verlag, New York (1971).
- Maltsev A. I. Algebraic Systems. Posthumous Edition, Springer-Verlag, New York and Heidelberg (1973).
- Malykhin V. I., "New aspects in general topology pertaining to forcing," Uspekhi Mat. Nauk, 43, No. 4, 83-94 (1988).
- Manin Yu. I., A Course in Mathematical Logic, Springer-Verlag, Berlin etc. (1977).
- Melter R., "Boolean valued rings and Boolean metric spaces," Arch. Math., No. 15, 354-363 (1964).
- Mendelson E., Introduction to Mathematical Logic, Van Nostrand, Princeton etc. (1963).
- Milvay C. J., "Banach sheaves," J. Pure Appl. Algebra, 17, No. 1, 69-84 (1980).
- Molchanov I. S., "Set-valued estimators for mean bodies related to Boolean models," Statistics, 28, No. 1, 43-56 (1996).
- Monk J. D. and Bonnet R. (eds.), Handbook of Boolean Algebras. Vol. 1-3, North-Holland, Amsterdam etc. (1989).
- Mostowski A., Constructible Sets with Applications, North-Holland, Amster- dam (1969).
- Murphy G., C * -Algebras and Operator Theory, Academic Press, Boston, (1990).
- Naȋmark M. A., Normed Rings, Noordhoff, Groningen (1959).
- Namba K., "Formal systems and Boolean valued combinatorics," in: South- east Asian Conference on Logic (Singapore, 1981), pp. 115-132. Stud. Logic Found. Math., 111, North-Holland, Amsterdam and New York, 1983.
- von Neumann J., Collected Works. Vol. 3: Rings of Operators, Pergamon Press, New York etc. (1961).
- von Neumann J., Collected Works. Vol. 4: Continuous Geometry and Other Topics, Pergamon Press, Oxford etc. (1962).
- von Neumann J., Selected Works on Functional Analysis [in Russian], Nauka, Moscow (1987).
- Nishimura H., "An approach to the dimension theory of continuous geometry from the standpoint of Boolean valued analysis," Publ. Res. Inst. Math. Sci., 20, No. 5, 1091-1101 (1984).
- Nishimura H., "Boolean valued decomposition theory of states," Publ. Res. Inst. Math. Sci., 21, No. 5, 1051-1058 (1985).
- Nishimura H., "Heyting valued set theory and fibre bundles," Publ. Res. Inst. Math. Sci., 24, No. 2, 225-247 (1988).
- Nishimura H., "On the absoluteness of types in Boolean valued lattices," Z. Math. Logik Grundlag. Math., 36, No. 3, 241-246 (1990).
- Nishimura H., "Some connections between Boolean valued analysis and topo- logical reduction theory for C * -algebras," Z. Math. Logik Grundlag. Math., 36, No. 5, 471-479 (1990).
- Nishimura H., "Boolean valued Dedekind domains," Z. Math. Logik Grund- lag. Math., 37, No. 1, 65-76 (1991). References
- Nishimura H., "Boolean valued Lie algebras," J. Symbolic Logic, 56, No. 2, 731-741 (1991).
- Nishimura H., "Some Boolean valued commutative algebra," Z. Math. Logik Grundlag. Math., 37, No. 4, 367-384 (1991).
- Nishimura H., "Foundations of Boolean-valued algebraic geometry," Z. Math. Logik Grundlag. Math., 37, No. 5, 421-438 (1991).
- Nishimura H., "On a duality between Boolean valued analysis and topological reduction theory," Math. Logic Quart., 39, No. 1, 23-32 (1993).
- Nishimura H., "On the duality between Boolean-valued analysis and reduc- tion theory under the assumption of separability," Internat. J. Theoret. Phys., 32, No. 3, 443-488 (1993).
- Nishimura H., "A Boolean-valued approach to Gleason's theorem," Rep. Math. Phys., 34, No. 2, 125-132 (1994).
- Nishimura H., "Boolean valued and Stone algebra valued measure theories," Math. Logic Quart., 40, No. 1, 69-75 (1994).
- Novikov P. S., Constructive Mathematical Logic from the Point of View of Classical Logic [in Russian], Nauka, Moscow (1977).
- Ozawa M., "Boolean valued analysis and type I AW * -algebras," Proc. Japan Acad. Ser. A Math. Sci., 59A, No. 8, 368-371 (1983).
- Ozawa M., "Boolean valued interpretation of Hilbert space theory," J. Math. Soc. Japan, 35, No. 4, 609-627 (1983).
- Ozawa M., "A classification of type I AW * -algebras and Boolean valued anal- ysis," J. Math. Soc. Japan, 36, No. 4, 589-608 (1984).
- Ozawa M., "A transfer principle from von Neumann algebras to AW * -algeb- ras," J. London Math. Soc. (2), 32, No. 1, 141-148 (1985).
- Ozawa M., "Nonuniqueness of the cardinality attached to homogeneous AW * - algebras," Proc. Amer. Math. Soc., 93, 681-684 (1985).
- Ozawa M., "Boolean valued analysis approach to the trace problem of AW * - algebras," J. London Math. Soc. (2), 33, No. 2, 347-354 (1986).
- Ozawa M., "Embeddable AW * -algebras and regular completions," J. London Math. Soc., 34, No. 3, 511-523 (1986).
- Ozawa M., "Boolean-valued interpretation of Banach space theory and mod- ule structures of von Neumann algebras," Nagoya Math. J., 117, 1-36 (1990).
- Pedersen G. K., Analysis Now, Springer-Verlag, Berlin etc. (1995).
- Pinus A. G., Boolean Constructions in Universal Algebras, Kluwer Academic Publishers, Dordrecht etc. (1993).
- Pirce R. S., Modules over Commutative Regular Rings, Amer. Math. Soc., Providence (1967).
- Rasiowa E. and Sikorski R., The Mathematics of Metamathematics, PWN, Warsaw (1962).
- Rema P. S., "Boolean metrization and topological spaces," Math. Japon., 9, No. 9, 19-30 (1964).
- Repicky M., "Cardinal characteristics of the real line and Boolean-valued models," Comment. Math. Univ. Carolin., 33, No. 1, 184 (1992).
- Rickart Ch., General Theory of Banach Algebras, Van Nostrand, Princeton (1960).
- Rosser J. B., Logic for Mathematicians, New York etc., McGraw-Hill Book Company, (1953).
- Rosser J. B., Simplified Independence Proofs. Boolean Valued Models of Set Theory, Academic Press, New York and London (1969).
- Rudin W., Functional Analysis, McGraw-Hill, New York (1991).
- Sakai S. C * -algebras and W * -algebras, Springer-Verlag, Berlin etc. (1971).
- Saracino D. and Weispfenning V., "On algebraic curves over commutative regular rings," in: Model Theory and Algebra (a Memorial Tribute to Abra- ham Robinson), Springer-Verlag, New York etc., 1969.
- Sarymsakov T. A. et al., Ordered Algebras [in Russian], Fan, Tashkent (1983).
- Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc. (1974).
- Schröder J., "Das Iterationsverfahren bei allgemeinierem Abshtandsbegriff," Math. Z., 66, 111-116 (1956).
- Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig (1984).
- Shoenfield G. R., Mathematical Logic, Addison-Wesley, Reading (1967).
- Shoenfield G. R., "Axioms of set theory," in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977.
- Shotaev G. N., "On bilinear operators in lattice-normed spaces," Optimiza- tion, 37, 38-50 (1986).
- Sikorski R., Boolean Algebras, Springer-Verlag, Berlin etc. (1964).
- Sikorskiȋ M. R., "Some applications of Boolean-valued models to study oper- ators on polynormed spaces," Sov. Math., 33, No. 2, 106-110 (1989).
- Smith K., "Commutative regular rings and Boolean-valued fields," J. Sym- bolic Logic, 49, No. 1, 281-297 (1984).
- Sobolev V. I., "On a poset valued measure of a set, measurable functions, and some abstract integrals," Dokl. Akad. Nauk SSSR, 91, No. 1, 23-26 (1953).
- Solov ëv Yu. P. and Troitskiȋ E. V., C * -Algebras and Elliptic Operators in Differential Topology [in Russian], Factorial, Moscow (1996).
- Solovay R. M., "A model of set theory in which every set of reals is Lebesgue measurable," Ann. of Math. (2), 92, No. 2, 1-56 (1970).
- Solovay R. M., "Real-valued measurable cardinals," in: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. 13, Part 1, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, 1971, pp. 397-428. References
- Solovay R. and Tennenbaum S., "Iterated Cohen extensions and Souslin's problem," Ann. Math., 94, No. 2, 201-245 (1972).
- Spivak M. D., The Joy of T E X, Amer. Math. Soc., Providence (1990).
- Sunder V. S., An Invitation to von Neumann Algebras, Springer-Verlag, New York etc. (1987).
- Takesaki M., Theory of Operator Algebras. Vol. 1, Springer-Verlag, New York (1979).
- Takeuti G., Two Applications of Logic to Mathematics, Iwanami and Prince- ton University Press, Tokyo and Princeton (1978).
- Takeuti G., "A transfer principle in harmonic analysis," J. Symbolic Logic, 44, No. 3, 417-440 (1979).
- Takeuti G., "Boolean valued analysis," in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ.
- Durham, Durham, 1977), Springer-Verlag, Berlin etc., 1979.
- Takeuti G., "Quantum set theory," in: Current Issues in Quantum Logic (Erice, 1979), Plenum, New York and London, 1981, pp. 303-322.
- Takeuti G., "Boolean completion and m-convergence," in: Categorical As- pects of Topology and Analysis (Ottawa, Ont., 1980), Springer-Verlag, Berlin etc., 1982, pp. 333-350.
- Takeuti G., "Von Neumann algebras and Boolean valued analysis," J. Math. Soc. Japan, 35, No. 1, 1-21 (1983).
- Takeuti G., "C * -algebras and Boolean valued analysis," Japan. J. Math. (N.S.), 9, No. 2, 207-246 (1983).
- Takeuti G. and Titani S., "Heyting-valued universes of intuitionistic set the- ory," in: Logic Symposia (Hakone, 1979/1980), Springer-Verlag, Berlin and New York, 1981, pp. 189-306.
- Takeuti G. and Titani S., "Globalization of intuitionistic set theory," Ann. Pure Appl. Logic, 33, No. 2, 195-211 (1987).
- Takeuti G. and Zaring W. M., Introduction to Axiomatic Set Theory, Sprin- ger-Verlag, New York etc. (1971).
- Takeuti G. and Zaring W. M., Axiomatic Set Theory, Springer-Verlag, New York (1973).
- Tkadlec J., "Boolean orthoposets and two-valued Jauch-Piron states," Tatra Mt. Math. Publ., No. 3, 155-160 (1993).
- Topping D. M., Jordan Algebras of Selfadjoint Operators, Amer. Math. Soc., Providence (1965).
- Tsalenko M. Sh. and Shul geȋfer E. F., Fundamentals of Category Theory [in Russian], Nauka, Moscow (1974).
- Veksler A. I., "On a new construction of the Dedekind completions of vector lattices and divisible l-groups," Sibirsk. Mat. Zh., 10, No. 6, 70-73 (1969).
- Veksler A. I., "Cyclic Banach spaces and Banach lattices," Dokl. Akad. Nauk SSSR, 213, No. 4, 770-773 (1973).
- Veksler A. I. and Geȋler V. A.,"On Dedekind and disjoint completeness of semiordered linear spaces," Sibirsk. Mat. Zh., 13, No. 1, 43-51 (1972).
- Venkataraman K., "Boolean valued almost periodic functions: existence of the mean," J. Indian Math. Soc. (N.S.), 43, No. 1-4, 275-283 (1979).
- Venkataraman K., "Boolean valued almost periodic functions on topological groups," J. Indian Math. Soc. (N.S.), 48, No. 1-4, 153-164 (1984).
- Vladimirov D. A., Boolean Algebras [in Russian], Nauka, Moscow (1969).
- Vopěnka P., "The limits of sheaves over extremally disconnected compact Hausdorff spaces," Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 15, No. 1, 1-4 (1967).
- Vopěnka P., "General theory of -models," Comment. Math. Univ. Carolin., 7, No. 1, 147-170 (1967).
- Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Noord- hoff, Groningen (1967).
- Wang Hao and McNaughton R., Axiomatic Systems of Set Theory [in French], Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1953).
- Wright J. D. M., "Vector lattice measures on locally compact spaces," Math. Z., 120, No. 3, 193-203 (1971).
- Yamaguchi J., "Boolean [0, 1]-valued continuous operators," Internat. J. Com- put. Math., 68, No. 1-2, 71-79 (1998).
- Yood B., Banach Algebras: an Introduction, Carleton University Press, Ot- tawa (1988).
- Zaanen A. C., Riesz Spaces. Vol. 2, North-Holland, Amsterdam etc. (1983).
- Zaanen A. C., Introduction to Operator Theory in Riesz Spaces, Springer- Verlag, Berlin etc. (1997).
- Zadeh L., The Concept of a Linguistic Variable and Its Application to Ap- proximate Reasoning, Elsevier, New York etc. (1973).
- Zhang Jin-wen, "A unified treatment of fuzzy set theory and Boolean valued set theory, fuzzy set structures and normal fuzzy set structures," J. Math. Anal. Appl., 76, No. 1, 297-301 (1980).
- Zhang Jin-wen, "Between fuzzy set theory and Boolean valued set theory," in: Fuzzy Information and Decision Processes, North-Holland, Amsterdam etc., 1982, pp. 143-147.