Abstract
This paper describes ongoing work towards building a multimodal computer system capable of sensing the affective state of a user. Two major problem areas exist in the affective communication research. Firstly, affective states are defined and described in an inconsistent way. Secondly, the type of training data commonly used gives an oversimplified picture of affective expression. Most studies ignore the dynamic, versatile and personalised nature of affective expression and the influence that social setting, context and culture have on its rules of display. We present a novel approach to affective sensing, using a generic model of affective communication and a set of ontologies to assist in the analysis of concepts and to enhance the recognition process. Whilst the scope of the ontology provides for a full range of multimodal sensing, this paper focuses on spoken language and facial expressions as examples.
References (14)
- Picard, R.: Affective Computing. MIT Press, Cambridge (MA), USA (1997)
- Scherer, K.: Vocal communication of emotion: A review of research paradigms. Speech Communication 40(1-2) (April 2003) 227-256
- Cowie, R., Douglas-Cowie, E., Cox, C.: Beyond emotion archetypes: Databases for emotion modelling using neural networks. Neural Networks 18(4) (May 2005) 371-388
- Stibbard, R.: Vocal expression of emotions in non-laboratory speech: An inves- tigation of the Reading/Leeds Emotion in Speech Project annotation data. PhD thesis, University of Reading, United Kingdom (2001)
- Devillers, L., Vidrascu, L., Lamel, L.: Challenges in real-life emotion annotation and machine learning based detection. Neural Networks 18(4) (May 2005) 407-422
- Liscombe, J., Riccardi, G., Hakkani-Tür, D.: Using context to improve emotion detection in spoken dialog systems. In: Proceedings of the 9th European Conference on Speech Communication and Technology EUROSPEECH'05. Volume 1., Lisbon, Portugal (September 2005) 1845-1848
- HUMAINE: http://emotion-research.net/, Last accessed 26 October 2006.
- Millar, J., Wagner, M., Goecke, R.: Aspects of Speaking-Face Data Corpus Design Methodology. In: Proceedings of the 8th International Conference on Spoken Lan- guage Processing ICSLP2004. Volume II., Jeju, Korea (October 2004) 1157-1160
- Koike, K., Suzuki, H., Saito, H.: Prosodic Parameters in Emotional Speech. In: Proc. 5th International Conference on Spoken Language Processing ICSLP'98. Volume 2., Sydney, Australia, ASSTA (December 1998) 679-682
- Shigeno, S.: Cultural similarities & differences in the recognition of audio-visual speech stimuli. In Mannell, R., Robert-Ribes, J., eds.: Proceedings of the Interna- tional Conference on Spoken Language Processing ICSLP'98. Volume 1., Sydney, Australia, ASSTA (December 1998) 281-284
- Schröder, M.: D6e: Report on representation languages http://emotionresearch. net/deliverables/D6efinal, Last accessed 26 October 2006.
- Arnold, A.: Automatische Erkennung von Gesichtsausdrücken auf der Basis statis- tischer Methoden und neuronaler Netze. Masterthesis, University of Applied Sci- ences Mannheim, Germany (2006)
- Cootes, T., Edwards, G., Taylor, C.: Active Appearance Models. In Burkhardt, H., Neumann, B., eds.: Proceedings of the European Conference on Computer Vision ECCV'98. Volume 2 of Lecture Notes in Computer Science 1406., Freiburg, Germany, Springer (June 1998) 484-498
- Wallhoff, F.: Facial Expressions and Emotion Database. http://www.mmk.ei. tum.de/∼waf/fgnet/feedtum.html, Last accessed 6 December 2006 Technische Uni- versität München.