Duality methods for solving variational inequalities
1981, Computers & Mathematics with Applications
https://doi.org/10.1016/0898-1221(81)90006-7Abstract
Methods of maximal monotone operators are used in order to study, from a general point of view, duality numerical algorithms for solving variational inequalities. With classical algorithms, such as Uxawa's method for the standard and augmented Lagrangian, this paper presents some new algorithms, which appear to have very good numerical performances.
References (14)
- A. Bermddez and C. Moreno, Application of pursuit method to optimal control problems. Appl. Mafh. Opt. (To appear).
- A. Pazy, Semi-groups of nonlinear contractions in Hilbert space. In Problems of Nonlinear Analysis (Edited by Cremonese). C.I.M.E., Roma (1971).
- M. R. Hestenes, Multiplier and gradient methods. 1. Opt. Theory Appl. 4, 303-320 (1%9).
- M. J. D. Powell, A method for the nonlinear constraints in minimization problems. In Optimization (Edited by R. Fletcher). Academic Press, New York (1972).
- R. Glowinski and A. Marroco, Sur l'appmximation par elements finis d'ordre un, et la resolution par penalisation- dualite, dune classe de pmblemes de Dirichlet non-lineaires, pp. 71-76. RAIRO, R2 (1975).
- M. Fortin, Minimization of some non-differential functionals by the augmented lagrangian method of Hestenes and Powell. Appl. Math. Opt. 2(3), 236250 (1976).
- I. Ekeland and R. Temam, Analyse Conoexe et Inequations Variationnelles. Dunod, Paris (1974).
- G. Duvaut and J. L. Lions, Les Inequations en Mchanique et en Physique. Dunod, Paris (1972).
- R. Glowinski, J. L. Lions and R. Tremolieres, Analyse Numerique des Inequations uariationnelles. Dunod, Paris (1976).
- H. Brezis, Multiplicateur de Lagrange en torsion elastoplastique. Archiu. Rat. Mech. Anal. 49,32-40 (1972).
- A. Pazy, On the asymptotic behaviour of iterates of nonexpasive mappings in Hilbert space. 1srael.t. Math. 26, W-204 (1977).
- P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. Rapport Interne No 29, Ecole Polytechnique (1978).
- P. L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Ser. A 284, 1357-1358 (1977).
- D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinerar variational problems via finite element approximation. Comput. Math. Appl. 2, 17-40 (1976).