Academia.eduAcademia.edu

Outline

Monads and comonads on module categories

2009

https://doi.org/10.1016/J.JALGEBRA.2009.06.003

Abstract

Let A be a ring and M A the category of right A-modules. It is well known in module theory that any A-bimodule B is an A-ring if and only if the

References (40)

  1. 11. Theorem. Let N ∈ C M be a [C, -]-Galois comodule over an A-coring C, put T = End C (N ) and assume T to be a B-ring for some ring B. Assume that N is a projective generator of right B-modules. Then the following hold.
  2. -⊗ [C,-] N : M [C,-] → M B is an equivalence. (2) C is a projective right A-module.
  3. N is a finitely generated and projective left A-module.
  4. C is isomorphic to the comatrix A-coring N ⊗ B
  5. * N .
  6. If, in addition, C is a generator of right A-modules, then N is a faithfully flat left A-module.
  7. Proof. Assertions (1) and (2) are immediate by 5.9.
  8. Since -⊗ [C,-] N is an equivalence, it has a left adjoint Hom B (N, -) : M B → M [C,-] . The free functor Hom A (C, -) has a left adjoint -⊗ [C,-] C : M [C,-] → M A by 4.3. References
  9. Barr, M., Composite cotriples and derived functors, [in:] Seminar on Triples and Categori- cal Homology Theory, B. Eckmann (ed.), Springer Lecture Notes in Mathematics 80, 336-356 (1969).
  10. Barr, M. and Wells, C., Toposes, Triples and Theories, Reprints in Theory and Applications of Categories, No. 12, 1-288, (2005). (This is an updated version of Grundl. der math. Wiss. 278, Springer-Verlag, (1983)).
  11. Beck, J. Triples, Algebras and Cohomology, PhD Thesis, Columbia University (1967); Reprints in Theory and Applications of Categories, No. 2, 1-59, (2003).
  12. Beck, J., Distributive laws, [in:] Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM 80 (1969), 119-140.
  13. Borceux, F., Handbook of Categorical Algebra 1. Basic Category Theory, Cambridge University Press, Cambridge (1994).
  14. Bruguières, A. and Virelizier, A., Hopf monads, Adv. Math. 215(2) (2007), 679-733.
  15. Brzeziński, T., Galois comodules, J. Algebra 290 (2005), 503-537.
  16. Brzeziński, T. and Wisbauer, R., Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press (2003).
  17. Dubuc, E., Kan extensions in enriched category theory, Springer Lecture Notes in Mathematics 145, (1970).
  18. Eilenberg, S. and Moore, J.C., Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965).
  19. Eilenberg, S. and Moore, J.C., Adjoint functors and triples, Ill. J. Math. 9 (1965), 381-398.
  20. El Kaoutit, L. and Gómez-Torrecillas, J., Comatrix corings: Galois corings, descent theory, and a structure theorem for cosemisimple corings, Math. Z. 244 (2003), 887-906.
  21. El Kaoutit, L., Compatibility condition between ring and coring, arXiv:math/0701652 (2007).
  22. Freyd, P., Abelian Categories, Harper & Row, New York (1964).
  23. Gómez-Torrecillas, J., Comonads and Galois corings, Appl. Categ. Struct. 14 (2006), 579-598.
  24. Guitart, R. and Riguet, J., Enveloppe Karoubienne de catégories de Kleisli, Cah. Topologie Géom. Différ. Catég. 33(3) (1992), 261-266.
  25. Kelly, G.M. and Street, R., Review of the elements of 2-categories, Category Sem., Proc., Sydney 1972/1973, Lect. Notes Math. 420 (1974), 75-103.
  26. Kleiner, M., Adjoint monads and an isomorphism of the Kleisli categories, J. Algebra 133(1) (1990), 79-82.
  27. Manes, E. and Mulry, Ph., Monad compositions. II: Kleisli strength, Math. Struct. Comput. Sci. 18(3) (2008), 613-643.
  28. Mesablishvili, B. and Wisbauer, R., Bimonads and Hopf monads on categories, arXiv:0710.1163 (2007), revised.
  29. Moerdijk, I., Monads on tensor categories, J. Pure Appl. Algebra 168(2-3) (2002), 189-208.
  30. Mulry, Ph. S., Lifting theorems for Kleisli categories, Mathematical foundations of programming semantics, Lecture Notes in Comput. Sci. 802, Springer, Berlin (1994), 304-319.
  31. Nȃstȃsescu, C., Van den Bergh, M. and Van Oystaeyen, F., Separable functors applied to graded rings, J. Algebra 123 (1989), 397-413.
  32. Positselski, L., Homological algebra of semimodules and semicontramodules, arXiv:0708.3398v8 (2009).
  33. Power, J. and Watanabe, H., Combining a monad and a comonad, Theoret. Comput. Sci. 280(1- 2) (2002), 137-162.
  34. Rafael, M.D., Separable functors revisited, Comm. Algebra 18 (1990), 1445-1459.
  35. Rosebrugh, R. and Wood, R.J., Split structures, Theory Appl. Categ. 13 (2004), 172-183.
  36. Street, R., The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149-168.
  37. Street, R., Frobenius monads and pseudomonoids, J. Math. Phys. 45(10) (2004), 3930-3948.
  38. Vercruysse, J., Equivalences between categories of modules and comodules, Acta Math. Sin. (Engl. Ser.) 24(10) (2008), 1655-1674.
  39. Wisbauer, R., On Galois comodules, Comm. Algebra 34(7) (2006), 2683-2711.
  40. Wisbauer, R., Algebras versus coalgebras, Appl. Categor. Struct. 16(1-2) (2008), 255-295.