Abstract
Let A be a ring and M A the category of right A-modules. It is well known in module theory that any A-bimodule B is an A-ring if and only if the
References (40)
- 11. Theorem. Let N ∈ C M be a [C, -]-Galois comodule over an A-coring C, put T = End C (N ) and assume T to be a B-ring for some ring B. Assume that N is a projective generator of right B-modules. Then the following hold.
- -⊗ [C,-] N : M [C,-] → M B is an equivalence. (2) C is a projective right A-module.
- N is a finitely generated and projective left A-module.
- C is isomorphic to the comatrix A-coring N ⊗ B
- * N .
- If, in addition, C is a generator of right A-modules, then N is a faithfully flat left A-module.
- Proof. Assertions (1) and (2) are immediate by 5.9.
- Since -⊗ [C,-] N is an equivalence, it has a left adjoint Hom B (N, -) : M B → M [C,-] . The free functor Hom A (C, -) has a left adjoint -⊗ [C,-] C : M [C,-] → M A by 4.3. References
- Barr, M., Composite cotriples and derived functors, [in:] Seminar on Triples and Categori- cal Homology Theory, B. Eckmann (ed.), Springer Lecture Notes in Mathematics 80, 336-356 (1969).
- Barr, M. and Wells, C., Toposes, Triples and Theories, Reprints in Theory and Applications of Categories, No. 12, 1-288, (2005). (This is an updated version of Grundl. der math. Wiss. 278, Springer-Verlag, (1983)).
- Beck, J. Triples, Algebras and Cohomology, PhD Thesis, Columbia University (1967); Reprints in Theory and Applications of Categories, No. 2, 1-59, (2003).
- Beck, J., Distributive laws, [in:] Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM 80 (1969), 119-140.
- Borceux, F., Handbook of Categorical Algebra 1. Basic Category Theory, Cambridge University Press, Cambridge (1994).
- Bruguières, A. and Virelizier, A., Hopf monads, Adv. Math. 215(2) (2007), 679-733.
- Brzeziński, T., Galois comodules, J. Algebra 290 (2005), 503-537.
- Brzeziński, T. and Wisbauer, R., Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press (2003).
- Dubuc, E., Kan extensions in enriched category theory, Springer Lecture Notes in Mathematics 145, (1970).
- Eilenberg, S. and Moore, J.C., Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965).
- Eilenberg, S. and Moore, J.C., Adjoint functors and triples, Ill. J. Math. 9 (1965), 381-398.
- El Kaoutit, L. and Gómez-Torrecillas, J., Comatrix corings: Galois corings, descent theory, and a structure theorem for cosemisimple corings, Math. Z. 244 (2003), 887-906.
- El Kaoutit, L., Compatibility condition between ring and coring, arXiv:math/0701652 (2007).
- Freyd, P., Abelian Categories, Harper & Row, New York (1964).
- Gómez-Torrecillas, J., Comonads and Galois corings, Appl. Categ. Struct. 14 (2006), 579-598.
- Guitart, R. and Riguet, J., Enveloppe Karoubienne de catégories de Kleisli, Cah. Topologie Géom. Différ. Catég. 33(3) (1992), 261-266.
- Kelly, G.M. and Street, R., Review of the elements of 2-categories, Category Sem., Proc., Sydney 1972/1973, Lect. Notes Math. 420 (1974), 75-103.
- Kleiner, M., Adjoint monads and an isomorphism of the Kleisli categories, J. Algebra 133(1) (1990), 79-82.
- Manes, E. and Mulry, Ph., Monad compositions. II: Kleisli strength, Math. Struct. Comput. Sci. 18(3) (2008), 613-643.
- Mesablishvili, B. and Wisbauer, R., Bimonads and Hopf monads on categories, arXiv:0710.1163 (2007), revised.
- Moerdijk, I., Monads on tensor categories, J. Pure Appl. Algebra 168(2-3) (2002), 189-208.
- Mulry, Ph. S., Lifting theorems for Kleisli categories, Mathematical foundations of programming semantics, Lecture Notes in Comput. Sci. 802, Springer, Berlin (1994), 304-319.
- Nȃstȃsescu, C., Van den Bergh, M. and Van Oystaeyen, F., Separable functors applied to graded rings, J. Algebra 123 (1989), 397-413.
- Positselski, L., Homological algebra of semimodules and semicontramodules, arXiv:0708.3398v8 (2009).
- Power, J. and Watanabe, H., Combining a monad and a comonad, Theoret. Comput. Sci. 280(1- 2) (2002), 137-162.
- Rafael, M.D., Separable functors revisited, Comm. Algebra 18 (1990), 1445-1459.
- Rosebrugh, R. and Wood, R.J., Split structures, Theory Appl. Categ. 13 (2004), 172-183.
- Street, R., The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149-168.
- Street, R., Frobenius monads and pseudomonoids, J. Math. Phys. 45(10) (2004), 3930-3948.
- Vercruysse, J., Equivalences between categories of modules and comodules, Acta Math. Sin. (Engl. Ser.) 24(10) (2008), 1655-1674.
- Wisbauer, R., On Galois comodules, Comm. Algebra 34(7) (2006), 2683-2711.
- Wisbauer, R., Algebras versus coalgebras, Appl. Categor. Struct. 16(1-2) (2008), 255-295.