Invariant subspaces, duality, and covers of the Petersen graph
2006, European Journal of Combinatorics
https://doi.org/10.1016/J.EJC.2005.04.003Abstract
A general method for finding elementary abelian regular covering projections of finite connected graphs is applied to the Petersen graph. As a result, a complete list of pairwise nonisomophic elementary abelian covers admitting a lift of a vertex-transitive group of automorphisms is given. The resulting graphs are explicitly described in terms of voltage assignments.
References (20)
- B. Alspach, Y. Liu, and C. Zhang, 'Nowhere-zero 4-flows and Cayley graphs on solvable groups', SIAM J. Discrete Math. 9 (1996), 151-154.
- N. L. Biggs, 'Homological coverings of graphs', J. London Math. Soc. 30 (1984), 1-14.
- M.D.E. Conder and P. Dobcsányi, 'Trivalent symmetric graphs on up to 768 vertices', J. Com- bin. Math. Combin. Comput. 40 (2002), 41-63.
- D. Ž. Djoković, 'Automorphisms of graphs and coverings', J. Combin. Theory Ser. B 16 (1974), 243-247.
- Y.Q. Feng and K. Wang, 's-regular cyclic coverings of the three-dimensional hypercube Q 3 ', European J. Combin. 24 (2003), 719-731.
- Y.Q. Feng and J.H. Kwak, 'An infinite family of cubic one-regular graphs with unsolvable automorphism groups', Discrete Math. 269 (2003), 281-286.
- J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley-Interscience, New York, 1987).
- M. Hofmeister, 'Graph covering projections arising from finite vector spaces over finite fields', Discrete Math. 143 (1995), 87-97.
- N. Jacobson, Lectures in Abstract Algebra, II. Linear Algebra, (Springer, New York, 1953).
- R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathemaics and Applications (Cambridge Univ. Press, Cambrifge, 1984).
- A. Malnič, R. Nedela, and M. Škoviera, 'Lifting graph automorphisms by voltage assign- ments', European J. Combin. 21 (2000), 927-947.
- A. Malnič, D. Marušič, and P. Potočnik, 'On cubic graphs admitting an edge-transitive solvable group', J. Algebraic Combin., to appear.
- A. Malnič, D. Marušič, and P. Potočnik, 'Elementary abelian covers of graphs', J. Alge- braic Combin., to appear.
- A. Malnič, D. Marušič, P. Potočnik, and C.Q. Wang, 'An infinite family of cubic edge-but not vertex-transitive graphs', Discrete math. 280 (2004) 133-148.
- P. Potočnik, 'Edge-colourings of cubic graphs admitting a solvable vertex-transitive group of automorphisms', J. Combin. Theory Ser. B, to appear.
- J. Širáň, 'Coverings of graphs and maps, ortogonality', and eigenvectors, J. Alg. Combin. 14 (2001), 57-72.
- M. Škoviera, 'A contribution to the theory of voltage graphs', Discrete Math. 61 (1986), 281-292.
- D.B. Surowski and C.W. Schroeder, 'Homological methods in algebraic map theory', European J. Combin. 24 (2003), 1003-1044.
- D.B. Surowski and C.W. Schroeder, 'Regular cyclic coverings of regular affine maps', European J. Combin. 24 (2003), 1045-1080.
- A. Venkatesh, 'Covers in imprimitevely symmetric graphs', Honours dissertation, Department of Mathematics and Statistics, University of West Australia, 1997.