Academia.eduAcademia.edu

Outline

Invariant subspaces, duality, and covers of the Petersen graph

2006, European Journal of Combinatorics

https://doi.org/10.1016/J.EJC.2005.04.003

Abstract

A general method for finding elementary abelian regular covering projections of finite connected graphs is applied to the Petersen graph. As a result, a complete list of pairwise nonisomophic elementary abelian covers admitting a lift of a vertex-transitive group of automorphisms is given. The resulting graphs are explicitly described in terms of voltage assignments.

References (20)

  1. B. Alspach, Y. Liu, and C. Zhang, 'Nowhere-zero 4-flows and Cayley graphs on solvable groups', SIAM J. Discrete Math. 9 (1996), 151-154.
  2. N. L. Biggs, 'Homological coverings of graphs', J. London Math. Soc. 30 (1984), 1-14.
  3. M.D.E. Conder and P. Dobcsányi, 'Trivalent symmetric graphs on up to 768 vertices', J. Com- bin. Math. Combin. Comput. 40 (2002), 41-63.
  4. D. Ž. Djoković, 'Automorphisms of graphs and coverings', J. Combin. Theory Ser. B 16 (1974), 243-247.
  5. Y.Q. Feng and K. Wang, 's-regular cyclic coverings of the three-dimensional hypercube Q 3 ', European J. Combin. 24 (2003), 719-731.
  6. Y.Q. Feng and J.H. Kwak, 'An infinite family of cubic one-regular graphs with unsolvable automorphism groups', Discrete Math. 269 (2003), 281-286.
  7. J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley-Interscience, New York, 1987).
  8. M. Hofmeister, 'Graph covering projections arising from finite vector spaces over finite fields', Discrete Math. 143 (1995), 87-97.
  9. N. Jacobson, Lectures in Abstract Algebra, II. Linear Algebra, (Springer, New York, 1953).
  10. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathemaics and Applications (Cambridge Univ. Press, Cambrifge, 1984).
  11. A. Malnič, R. Nedela, and M. Škoviera, 'Lifting graph automorphisms by voltage assign- ments', European J. Combin. 21 (2000), 927-947.
  12. A. Malnič, D. Marušič, and P. Potočnik, 'On cubic graphs admitting an edge-transitive solvable group', J. Algebraic Combin., to appear.
  13. A. Malnič, D. Marušič, and P. Potočnik, 'Elementary abelian covers of graphs', J. Alge- braic Combin., to appear.
  14. A. Malnič, D. Marušič, P. Potočnik, and C.Q. Wang, 'An infinite family of cubic edge-but not vertex-transitive graphs', Discrete math. 280 (2004) 133-148.
  15. P. Potočnik, 'Edge-colourings of cubic graphs admitting a solvable vertex-transitive group of automorphisms', J. Combin. Theory Ser. B, to appear.
  16. J. Širáň, 'Coverings of graphs and maps, ortogonality', and eigenvectors, J. Alg. Combin. 14 (2001), 57-72.
  17. M. Škoviera, 'A contribution to the theory of voltage graphs', Discrete Math. 61 (1986), 281-292.
  18. D.B. Surowski and C.W. Schroeder, 'Homological methods in algebraic map theory', European J. Combin. 24 (2003), 1003-1044.
  19. D.B. Surowski and C.W. Schroeder, 'Regular cyclic coverings of regular affine maps', European J. Combin. 24 (2003), 1045-1080.
  20. A. Venkatesh, 'Covers in imprimitevely symmetric graphs', Honours dissertation, Department of Mathematics and Statistics, University of West Australia, 1997.