Academia.eduAcademia.edu

Outline

A quantum dot single photon source

2001

Abstract

We demonstrate heralded single photon emission from a self-assembled InAs quantum dot (QD). Pulsed optical excitation (82 MHz) together with Coulomb renormalization effects allows for the realization of regular single photon emission at the excitonic transiton (1X) with nearly 100% efficiency. By temperature tuning, we are able to shift the 1X transition into resonance with a whispering gallery mode of a microdisk (Q∼ 6500) and achieve turnstile operation of the coupled QD-cavity system.

FAQs

sparkles

AI

What mechanisms improve the performance of the single photon source?add

The research reveals that the Purcell effect enhances emission rates, reducing jitter to 420 ps while achieving data rates of up to 1 GHz.

How does temperature affect the emission characteristics of quantum dots?add

The study finds that increasing temperature shifts the quantum dot 1X-transition energy, enabling resonance with whispering gallery modes and enhancing photon emission by a factor of 29 at 44 K compared to 4 K.

What role do multiexcitons play in single photon emission from quantum dots?add

The findings indicate that multiexcitons lead to anharmonic spectra, allowing regulation of photon emission processes and ensuring single photon output under saturation conditions.

What experimental improvements validate the photon antibunching effect?add

It is shown that g(2)(0) < 0.5 indicates strong photon antibunching, with lifetime measurements corresponding to photon emissions being below 3 ns, supporting single-photon characteristics.

How does the microdisk geometry influence photon emission rates?add

The microdisk’s quality factor of around 6500 is associated with an estimated Purcell factor of 17, yet the actual factor observed is about 5-6 due to non-ideal spatial overlaps.

References (26)

  1. E. Knill, R. Laflamme: Nature 409, 46-52 (2001) 3
  2. D. Bouwmeester, A. Ekert, A. Zeilinger: The Physics of Quantum Information (Springer, Berlin, 2000) 3
  3. D. F. Walls, G. J. Milburn: Quantum Optics (Springer, Berlin, 1994) 3
  4. H. J. Kimble, M. Dagenais, L. Mandel: Phys. Rev. Lett. 39, 691-94 (1977) 3, 7
  5. F. Diedrich, H. Walther: Phys. Rev. Lett. 58, 203-94 (1987) 3
  6. Th. Basché, W. E. Moerner, M. Orrit, H. Talon, Phys. Rev. Lett. 69, 1516-19 (1992) 3
  7. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Bu- ratto, Nature 406, 968-970 (2000) 4
  8. C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu: Phys. Rev. B Rapid Communication, in print 4, 8, 9, 10
  9. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter: Phys. Rev. Lett. 85, 290-293 (2000) 4
  10. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier: Opt. Lett. 25, 1294-1297 (2000) 4
  11. A. Imamoglu, Y. Yamamoto: Phys. Rev. Lett. 72, 210-13 (1994) 4
  12. J. Kim, O. Benson, H. Kan, Y. Yamamoto: Nature 397, 500-503 (1999) 4
  13. C. Brunel, B. Lounis, P. Tamarat, M. Orrit: Phys. Rev. Lett. 83, 2722-2725 (1999) 4, 7, 11
  14. B. Lounis, W. E. Moerner: Nature 407, 491-493 (2000) 4
  15. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu: Science 290, 2282-2285 (2000) 4
  16. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto: Phys. Rev. Lett. 86, 1502-1505 (2001) 4
  17. E. M. Purcell: Phys. Rev. 69, 681 (1946)
  18. J.-M. Gérard, B. Gayral: J. Lightwave Technol. 17, 2089 (1999) 4, 11
  19. P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, A. Imamoglu: Appl. Phys. Lett. 77, 184 (2000) 5
  20. J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff: Appl. Phys. Lett. 72, 3172 (1998) 5
  21. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, J. L. Merz: Phys. Rev. B 54, 11548 (1996) 5
  22. R. Hanbury Brown, R. Q. Twiss: Nature 178, 1447 (1956) 6
  23. A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch: Phys. Rev. Lett. 79, 1467 (1997) 7
  24. E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, P. M. Petroff: Phys. Rev. B 62, 11038 (2000) 7, 10
  25. E. M. Purcell: Phys. Rev. 69, 681 (1946) 9, 11
  26. A. Kiraz et al., submitted to Appl. Phys. Lett. 11