Academia.eduAcademia.edu

Outline

Tits Construction of The Exceptional Simple Lie Algebras

2011, Pure and Applied Mathematics Quarterly

https://doi.org/10.4310/PAMQ.2011.V7.N3.A4

Abstract

The classical Tits construction of the exceptional simple Lie algebras has been extended in a couple of directions by using either Jordan superalgebras or composition superalgebras. These extensions are reviewed here. The outcome has been the discovery of some new simple modular Lie superalgebras.

FAQs

sparkles

AI

What novel insights arise from extending Tits construction to Lie superalgebras?add

The paper reveals that extensions of Tits construction can produce new simple Lie superalgebras in characteristics 2, 3, and 5, resulting in ten distinct examples in characteristic 3 and one in characteristic 5.

How does Tits construction utilize composition and Jordan algebras?add

Tits construction combines a composition algebra and a degree-three Jordan algebra, producing exceptional simple Lie algebras such as E_8, with restrictions on dimensions of the composition algebra.

What is the significance of Freudenthal's Magic Square in this context?add

Freudenthal's Magic Square is expanded into a rectangle accommodating Lie superalgebras beyond classical limits, highlighting its application in algebraic structures across various characteristics.

How does the Grassmann envelope relate to Jordan superalgebras?add

The Grassmann envelope characterizes a superalgebra as a Jordan superalgebra, fulfilling necessary commutativity and trace conditions central to constructing new Lie superalgebras.

What conditions restrict the dimensions of composition algebras in Tits construction?add

The dimensions of composition algebras in Tits construction are limited to 1, 2, 4, or 8, corresponding to their classification as elements of associative algebras.

References (43)

  1. Pablo Alberca-Bjerregaard, Cándido Martín-González, Alberto Elduque, and Fran- cisco José Navarro-Márquez, On the Cartan Jacobson theorem, J. Algebra 250 (2002), 397-407.
  2. Bruce N. Allison and John R. Faulkner, Nonassociative coefficient algebras for Stein- berg unitary Lie algebras, J. Algebra 161 (1993), no. 1, 1-19.
  3. Chris H. Barton and Anthony Sudbery, Magic Squares of Lie Algebras, arXiv:math.RA/0001083.
  4. Magic squares and matrix models of Lie algebras, Adv. Math. 180 (2003), no. 2, 596-647.
  5. Georgia Benkart and Alberto Elduque, A new construction of the Kac Jordan super- algebra, Proc. Amer. Math. Soc. 130, (2002), no. 11, 3209-3217.
  6. The Tits construction and the exceptional simple classical Lie superalgebras, Q. J. Math. 54 (2003), no. 2, 123-137.
  7. Sofiane Bouarroudj, Pavel Grozman and Dimitry Leites, Cartan matrices and presen- tations of Cunha and Elduque Superalgebras, preprint arXiv.math.RT/0611391.
  8. Classification of simple finite dimensional modular Lie superalgebras with Cartan matrix, SIGMA 5 (2009), 060, 63 pages.
  9. Georgia Benkart and Efim Zelmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math. 126 (1996), no. 1, 1-45.
  10. Isabel Cunha and Alberto Elduque, An extended Freudenthal Magic Square in char- acteristic 3, J. Algebra 317 (2007), 471-509.
  11. The extended Freudenthal magic square and Jordan algebras, manuscripta math. 123 (2007), no. 3, 325-351.
  12. The Supermagic Square in characteristic 3 and Jordan superalgebras, Alge- bras, Representations and Applications. Proceedings of a Conference in Honour of Ivan Shestakov's 60th Birthday (Maresias, Brazil 2007). Contemporary Mathematics 483 (2009), 91-106.
  13. Alberto Elduque, The magic square and symmetric compositions, Rev. Mat. Ibero- americana 20 (2004), no. 2, 475-491.
  14. New simple Lie superalgebras in characteristic 3, J. Algebra 296 (2006), no. 1, 196-233.
  15. The Magic Square and Symmetric Compositions II, Rev. Mat. Iberoameri- cana 23 (2007), 57-84.
  16. Some new simple modular Lie superalgebras, Pacific J. Math. 231 (2007), no. 2, 337-359.
  17. The Tits construction and some simple Lie superalgebras in characteristic 3, J. Lie Theory 18 (2008), no. 3, 601-615.
  18. Models of some simple modular Lie superalgebras, Pacific J. Math. 240 (2009), no. 1, 49-83.
  19. Gradings on symmetric composition algebras, to appear in J. Algebra. Preprint arXiv:0809.1922 [math.RA].
  20. EO02] Alberto Elduque and Susumu Okubo, Composition superalgebras, Comm. Algebra 30 (2002), no. 11, 5447-5471.
  21. Alberto Elduque and José María Pérez-Izquierdo, Composition algebras with associa- tive bilinear form, Comm. Algebra 24 (1996), no. 3, 1091-1116.
  22. Hans Freudenthal, Lie groups in the foundations of geometry, Advances in Math. 1 (1964), no. 2, 145-190.
  23. Leslie Hogben and Victor G. Kac, Erratum: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (1977), 1375-1400, Comm. Algebra 11 (1983), 1155-1156.
  24. Nathan Jacobson, Structure and Representations of Jordan Algebras, American Math- ematical Society Colloquium Publications, Vol. XXXIX, Providence, R.I. 1968.
  25. Victor G. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8-96.
  26. Classification of Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (1977), 1375-1400.
  27. Issai L. Kantor, Classification of irreducible transitive differential groups, Soviet Math. Dokl. 5 (1964), 1404-1407. (Translated from Dokl. Akad. Nauk. SSSR 158 (1964), 1271-1274.)
  28. Irvin Kaplansky, Graded Jordan Algebras I, preprint 1975. (Available at http://www.justpasha.org/math/links/subj/lie/kaplansky/)
  29. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
  30. Max Koecher, Imbedding of Jordan algebras in Lie algebras. I., Amer. J. Math. 89 (1967), 787-815.
  31. Joseph M. Landsberg and Laurent Manivel, Triality, exceptional Lie algebras and Deligne dimension formulas, Adv. Math. 171 (2002), no. 1, 59-85.
  32. Representation theory and projective geometry, Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin, 2004, pp. 71-122.
  33. Consuelo Martínez and Efim Zelmanov, Simple finite dimensional Jordan superalge- bras of prime characteristic, J. Algebra 236 (2001), 575-629.
  34. Kevin McCrimmon, The Grassmann Envelope of the Kac Superalgebra sK 10 , preprint. Available at http://www.uibk.ac.at/mathematik/loos/jordan/archive/gren/ index.html.
  35. Susumu Okubo, Pseudo-quaternion and pseudo-octonion algebras, Hadronic J. 1 (1978), no. 4, 1250-1278.
  36. Michel Racine and Efim Zelmanov, Simple Jordan superalgebras with semisimple even part, J. Algebra 270 (2003), no. 2, 374-444.
  37. Richard D. Schafer, An introduction to nonassociative algebras, Dover Publications Inc., New York, 1995.
  38. Ivan P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra i Logika 36 (1997), no. 6, 675-716, 722.
  39. Jacques Tits, Une classe d'algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530-535.
  40. Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles.
  41. I. Construction, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 223-237.
  42. Ernest B. Vinberg, A construction of exceptional simple Lie groups, (Russian). Tr. Semin. Vecktorn. Tensorn. anal. 13 (1966), 7-9.
  43. Konstantin A. Zhevlakov, Arkadii M. Slin ′ ko, Ivan P. Shestakov, and Anatolii I. Shir- shov, Rings that are nearly associative, Pure and Applied Mathematics, vol. 104, Aca- demic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982, Translated from the Russian by Harry F. Smith.