Academia.eduAcademia.edu

Outline

Models of some simple modular Lie superalgebras

2009, Pacific Journal of Mathematics

https://doi.org/10.2140/PJM.2009.240.49

Abstract

Models of the exceptional simple modular Lie superalgebras in characteristic p ≥ 3, that have appeared in the classification due to Bouarroudj, Grozman and Leites [BGLb] of the Lie superalgebras with indecomposable symmetrizable Cartan matrices, are provided. The models relate these exceptional Lie superalgebras to some low dimensional nonassociative algebraic systems.

References (20)

  1. Sofiane Bouarroudj, Pavel Grozman and Dimitry Leites, Cartan matrices and presen- tations of Cunha and Elduque Superalgebras, arXiv.math.RT/0611391.
  2. BGLb] , Classification of simple finite dimensional modular Lie superalgebras with Cartan matrix, arXiv:0710.5149 [math.RT].
  3. Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6 (Translated from the 1968 French original by Andrew Pressley), Springer-Verlag, Berlin, 2002.
  4. Isabel Cunha and Alberto Elduque, An extended Freudenthal Magic Square in char- acteristic 3, J. Algebra 317 (2007), 471-509.
  5. The extended Freudenthal magic square and Jordan algebras, Manuscripta Math. 123 (2007), no. 3, 325-351.
  6. Alberto Elduque, The magic square and symmetric compositions., Rev. Mat. Iberoam. 20 (2004), no. 2, 475-491.
  7. A new look at Freudenthal's magic square, Non-associative algebra and its applications, L. Sabinin, L.V. Sbitneva, and I. P. Shestakov, eds., Lect. Notes Pure Appl. Math., vol. 246, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 149-165.
  8. New simple Lie superalgebras in characteristic 3, J. Algebra 296 (2006), no. 1, 196-233.
  9. The Magic Square and Symmetric Compositions II, Rev. Mat. Iberoameri- cana 23 (2007), 57-84.
  10. Some new simple modular Lie superalgebras, Pacific J. Math. 231 (2007), no. 2, 337-359.
  11. The Tits construction and some simple Lie superalgebras in characteristic 3, arXiv:math.RA/0703784.
  12. Alberto Elduque and Susumu Okubo, Composition superalgebras, Comm. Algebra 30 (2002), no. 11, 5447-5471.
  13. Nathan Jacobson, Structure and representations of Jordan algebras, American Math- ematical Society Colloquium Publications, Vol. XXXIX, American Mathematical So- ciety, Providence, R.I., 1968.
  14. Victor G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96.
  15. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
  16. Alexei I. Kostrikin, A parametric family of simple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 744-756.
  17. Kevin McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.
  18. Susumu Okubo, Triple products and Yang-Baxter equation. I. Octonionic and quater- nionic triple systems, J. Math. Phys. 34 (1993), no. 7, 3273-3291.
  19. Ivan P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra i Logika 36 (1997), no. 6, 675-716, 722.
  20. Jacques Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exception- nelles. I: Construction, Nederl. Akad. Wet., Proc., Ser. A 69 (1966), 223-237.