Models of some simple modular Lie superalgebras
2009, Pacific Journal of Mathematics
https://doi.org/10.2140/PJM.2009.240.49Abstract
Models of the exceptional simple modular Lie superalgebras in characteristic p ≥ 3, that have appeared in the classification due to Bouarroudj, Grozman and Leites [BGLb] of the Lie superalgebras with indecomposable symmetrizable Cartan matrices, are provided. The models relate these exceptional Lie superalgebras to some low dimensional nonassociative algebraic systems.
References (20)
- Sofiane Bouarroudj, Pavel Grozman and Dimitry Leites, Cartan matrices and presen- tations of Cunha and Elduque Superalgebras, arXiv.math.RT/0611391.
- BGLb] , Classification of simple finite dimensional modular Lie superalgebras with Cartan matrix, arXiv:0710.5149 [math.RT].
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6 (Translated from the 1968 French original by Andrew Pressley), Springer-Verlag, Berlin, 2002.
- Isabel Cunha and Alberto Elduque, An extended Freudenthal Magic Square in char- acteristic 3, J. Algebra 317 (2007), 471-509.
- The extended Freudenthal magic square and Jordan algebras, Manuscripta Math. 123 (2007), no. 3, 325-351.
- Alberto Elduque, The magic square and symmetric compositions., Rev. Mat. Iberoam. 20 (2004), no. 2, 475-491.
- A new look at Freudenthal's magic square, Non-associative algebra and its applications, L. Sabinin, L.V. Sbitneva, and I. P. Shestakov, eds., Lect. Notes Pure Appl. Math., vol. 246, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 149-165.
- New simple Lie superalgebras in characteristic 3, J. Algebra 296 (2006), no. 1, 196-233.
- The Magic Square and Symmetric Compositions II, Rev. Mat. Iberoameri- cana 23 (2007), 57-84.
- Some new simple modular Lie superalgebras, Pacific J. Math. 231 (2007), no. 2, 337-359.
- The Tits construction and some simple Lie superalgebras in characteristic 3, arXiv:math.RA/0703784.
- Alberto Elduque and Susumu Okubo, Composition superalgebras, Comm. Algebra 30 (2002), no. 11, 5447-5471.
- Nathan Jacobson, Structure and representations of Jordan algebras, American Math- ematical Society Colloquium Publications, Vol. XXXIX, American Mathematical So- ciety, Providence, R.I., 1968.
- Victor G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96.
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
- Alexei I. Kostrikin, A parametric family of simple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 744-756.
- Kevin McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.
- Susumu Okubo, Triple products and Yang-Baxter equation. I. Octonionic and quater- nionic triple systems, J. Math. Phys. 34 (1993), no. 7, 3273-3291.
- Ivan P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra i Logika 36 (1997), no. 6, 675-716, 722.
- Jacques Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exception- nelles. I: Construction, Nederl. Akad. Wet., Proc., Ser. A 69 (1966), 223-237.