Academia.eduAcademia.edu

Outline

On the Location of Roots of Graph Polynomials

2013, Electronic Notes in Discrete Mathematics

https://doi.org/10.1016/J.ENDM.2013.07.033

Abstract

Roots of graph polynomials such as the characteristic polynomial, the chromatic polynomial, the matching polynomial, and many others are widely studied. In this paper we examine to what extent the location of these roots reflects the graph theoretic properties of the underlying graph.

Key takeaways
sparkles

AI

  1. The paper explores how roots of graph polynomials reflect graph properties.
  2. It establishes d.p.-equivalence and prefactor equivalence for graph polynomials.
  3. The authors demonstrate modification theorems for root locations under equivalences.
  4. Real roots of graph polynomials can be made dense or bounded through transformations.
  5. The findings suggest that semantic significance in graph polynomials is a research challenge.

References (44)

  1. M. Aigner. A course in enumeration. Graduate Texts in Mathematics. Springer, 2007.
  2. S. Akbari, S. Alikhani, and Y.-H. Peng. Characterization of graphs using domination poly- nomials. Eur. J. Comb., 31(7):1714-1724, 2010.
  3. S. Akbari and M. R. Oboudi. On the edge cover polynomial of a graph. Eur. J. Comb., 34(2):297-321, 2013.
  4. S. Alikhani. Dominating Sets and Domination Polynomials of Graphs. PhD thesis, Universiti Putra Malaysia, 2009. http://psasir.upm.edu.my/7250/.
  5. J. L. Arocha and B. Llano. Mean value for the matching and dominating polynomial. Dis- cussiones Mathematicae Graph Theory, 20(1):57-69, 2000.
  6. I. Averbouch. Completeness and Universality Properties of Graph Invariants and Graph Polynomials. PhD thesis, Technion -Israel Institute of Technology, Haifa, Israel, 2011.
  7. I. Averbouch, B. Godlin, and J.A. Makowsky. An extension of the bivariate chromatic poly- nomial. European Journal of Combinatorics, 31(1):1-17, 2010.
  8. A. T. Balaban. Solved and unsolved problems in chemical graph theory. quo vadis, graph theory? Ann. Discrete Math., 35:109-126, 1993.
  9. A. T. Balaban. Chemical graphs: Looking back and glimpsing ahead. Journal of Chemical Information and Computer Science, 35:339-350, 1995.
  10. B. Bollobás. Modern Graph Theory. Springer, 1998.
  11. F. Brenti, G.F. Royle, and D.G. Wagner. Location of zeros of chromatic and related polyno- mials of graphs. Canadian Journal of Mathematics, 46:55-80, 1994.
  12. A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Springer Universitext. Springer, 2012.
  13. J.I. Brown, C.A. Hickman, and R.J. Nowakowski. On the location of roots of independence polynomials. Journal of Algebraic Combinatorics, 19.3:273-282, 2004.
  14. J.I. Brown and J. Tufts. On the roots of domination polynomials. Graphs and Combinatorics, published online:DOI 10.1007/s00373-013-1306-z, 2013.
  15. P. Csikvári and M. R. Oboudi. On the roots of edge cover polynomials of graphs. Eur. J. Comb., 32(8):1407-1416, 2011.
  16. D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambrosius Barth, 3rd edition, 1995.
  17. P. de la Harpe and F. Jaeger. Chromatic invariants for finite graphs: Theme and polynomial variations. Linear Algebra and its Applications, 226-228:687-722, 1995.
  18. F.M. Dong, M.D. Hendy, K.L. Teo, and C.H.C. Little. The vertex-cover polynomial of a graph. Discrete Mathematics, 250:71-78, 2002.
  19. F.M. Dong, K.M. Koh, and K.L. Teo. Chromatic Polynomials and Chromaticity of Graphs. World Scientific, 2005.
  20. J. Ellis-Monaghan and C. Merino. Graph polynomials and their applications i: The Tutte polynomial. arXiv 0803.3079v2 [math.CO], 2008.
  21. J. Ellis-Monaghan and C. Merino. Graph polynomials and their applications ii: Interrelations and interpretations. arXiv 0806.4699v1 [math.CO], 2008.
  22. J. A. Ellis-Monaghan and I. Sarmiento. A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan. Eur. J. Comb., 32(6):782-794, 2011.
  23. D. Garijo, A. Goodall, and J. Nešetřil. Polynomial graph invariants from homomorphism numbers. arXiv:1308.3999 [math.CO], 2013.
  24. B. Godlin, E. Katz, and J.A. Makowsky. Graph polynomials: From recursive definitions to subset expansion formulas. Journal of Logic and Computation, 22(2):237-265, 2012.
  25. M. Goldwurm and M. Santini. Clique polynomials have a unique root of smallest modulus. Inf. Process. Lett., 75(3):127-132, 2000.
  26. I. Gutman and F. Harary. Generalizations of the matching polynomial. Utilitas Mathematicae, 24:97-106, 1983.
  27. C.J. Heilmann and E.H. Lieb. Theory of monomer-dymer systems. Comm. Math. Phys, 25:190-232, 1972.
  28. P. Henrici. Applied and Computational Complex Analysis, volume 1. Wiley Classics Library. John Wiley, 1988.
  29. C. Hoede and X. Li. Clique polynomials and independent set polynomials of graphs. Discrete Mathematics, 125:219-228, 1994.
  30. R. Hoshino. Independence Polynomials of Circulant Graphs. PhD thesis, Dalhousie Univer- sity, Halifax, Nova Scotia, 2007.
  31. T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In M. Grohe and J.A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics, volume 558 of Contemporary Mathematics, pages 207-242. American Mathematical Society, 2011.
  32. T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks. Recurrence relations and splitting formulas for the domination polynomial. Electr. J. Comb., 19(3):P47, 2012.
  33. V.E. Levit and E. Mandrescu. The independence polynomial of a graph -a survey. In S. Boza- palidis, A. Kalampakas, and G. Rahonis, editors, Proceedings of the 1st International Con- ference on Algebraic Informatics, pages 233-254. Aristotle University of Thessaloniki, De- partment of Mathematics, Thessaloniki, 2005.
  34. L.Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. AMS, 2012.
  35. L. Lovász and M.D. Plummer. Matching Theory, volume 29 of Annals of Discrete Mathe- matics. North Holland, 1986.
  36. J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic, 126.1-3:159-213, 2004.
  37. J.A. Makowsky and E.V. Ravve. Logical methods in combinatorics, Lecture 11. Course given in 2009 under the number 236605, Advanced Topics, available at: http://www.cs.technion.ac.il/ janos/COURSES/236605-09/lec11.pdf.
  38. J.A. Makowsky and E.V. Ravve. On the location of roots of graph polynomials. Electronic Notes in Discrete Mathematics, 43:201-206, 2013.
  39. C. Merino and S. D. Noble. The equivalence of two graph polynomials and a symmetric function. Combinatorics, Probability & Computing, 18(4):601-615, 2009.
  40. A. D. Sokal. Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions. Combinatorics, Probability & Computing, 10(1):41-77, 2001.
  41. A. D. Sokal. Chromatic roots are dense in the whole complex plane. Combinatorics, Proba- bility & Computing, 13(2):221-261, 2004.
  42. A. D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In Survey in Combinatorics, 2005, volume 327 of London Mathematical Society Lecture Notes, pages 173-226, 2005.
  43. P. Tittmann, I. Averbouch, and J.A. Makowsky. The enumeration of vertex induced sub- graphs with respect to the number of components. European Journal of Combinatorics, 32(7):954-974, 2011.
  44. N. Trinajstić. Chemical Graph Theory. CRC Press, 2nd edition, 1992. Computer Science Department, Technion-IIT, Haifa, Israel E-mail address: janos@.cs.technion.ac.il