Nonlocality in string theory
https://doi.org/10.1088/1751-8113/47/35/355402Abstract
We discuss an aspect of string theory which has been tackled under many different perspectives, but incompletely: the role of nonlocality in the theory and its relation with the geometric shape of the string. In particular, we will describe in quantitative terms how one can zoom out an extended object such as the string so that, at sufficiently large scales, it appears structureless. Since there are no free parameters in free string theory, the notion of large scales will be univocally determined. In other words, we will be able to answer the question: How and at which scale can the string be seen as a particle? In doing so, we will employ the concept of spectral dimension in a new way with respect to its usual applications in quantum gravity. The operational notions of worldsheet and target spacetime dimension in string theory are also clarified and found to be in mutual agreement.
References (23)
- A. Pais and G.E. Uhlenbeck, Phys. Rev. 79, 145 (1950).
- D.G. Barci, L.E. Oxman, and M. Rocca, Int. J. Mod. Phys. A 11, 2111 (1996).
- D.A. Eliezer and R.P. Woodard, Nucl. Phys. B 325, 389 (1989).
- K. Ohmori, arXiv:hep-th/0102085.
- E. Fuchs and M. Kroyter, Phys. Rep. 502, 89 (2011).
- G. Calcagni and G. Nardelli, J. High Energy Phys. 1002, 093 (2010).
- W. Pauli, Nuovo Cim. 10, 648 (1953).
- N. Moeller and B. Zwiebach, J. High Energy Phys. 0210, 034 (2002).
- R.L.P. do Amaral and E.C. Marino, J. Phys. A 25, 5183 (1992).
- E.T. Tomboulis, arXiv:hep-th/9702146.
- G.V. Efimov, Nonlocal Interactions of Quantized Fields [in Russian] (Nauka, Moscow, 1977).
- N. Barnaby and N. Kamran, J. High Energy Phys. 0802, 008 (2008).
- G. Calcagni, M. Montobbio, and G. Nardelli, Phys. Lett. B 662, 285 (2008).
- L. Modesto, Phys. Rev. D 86, 044005 (2012).
- Kh. Namsrai and M. Dineykhan, Int. J. Theor. Phys. 22, 131 (1983).
- T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012).
- M. Kato, Phys. Lett. B 245, 43 (1990).
- B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, England, 2009).
- T.-C. Cheng, P.-M. Ho, and T.-K. Lee, J. Phys. A 42, 055202 (2009).
- L.F. Abbott and M.B. Wise, Am. J. Phys. 49, 37 (1981).
- E. Spallucci, A. Smailagic, and P. Nicolini, Phys. Rev. D 73, 084004 (2006).
- J.J. Atick and E. Witten, Nucl. Phys. B 310, 291 (1988).
- E. Akkermans, G.V. Dunne, and A. Teplyaev, Phys. Rev. Lett. 105, 230407 (2010).