Academia.eduAcademia.edu

Outline

Visualization in comparative music research

https://doi.org/10.1007/978-3-7908-1709-6_16

Abstract
sparkles

AI

This paper examines various aspects of comparative music research with a focus on visualization techniques. It discusses categories of music representation including notation-based, event-based, and signal representations, as well as the computational tools available for analyzing each type. The paper also highlights the significance of musical databases such as the RISM incipits database and the Digital Archive of Finnish Folk Tunes, providing examples of visualization methods applied to large musical collections.

References (26)

  1. Aarden B, Huron D (2001) Mapping European folksong: Geographical localiza- tion of musical features. Computing in Musicology 12:169-183
  2. Barlow SH, Morgenstern S (1948) A Dictionary of Musical Themes. Crown Pub- lishers, New York
  3. Brown JC (1993) Determination of meter of musical scores by autocorrelation. Journal of the Acoustical Society of America 94:1953-1957
  4. Cooper M, Foote J (2002) Automatic Music Summarization via Similarity Analy- sis. In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR 2002), pp. 81-5
  5. Dixon S, Pampalk E, Widmer G (2003) Classification of dance music by periodic- ity patterns. Proceedings of the 4th International Conference on Music Infor- mation Retrieval (ISMIR'03), pp. 159-165
  6. Dowling WJ (1971) Recognition of inversions of melodies and melodic contours. Perception & Psychophysics 9:348-349
  7. Eerola T, Toiviainen P (2001) A method for comparative analysis of folk music based on musical feature extraction and neural networks. In: H Lappalainen (ed) Proceedings of the VII International Symposium of Systematic and Comparative Musicology and the III International Conference on Cognitive Musicology. University of Jyväskylä
  8. Eerola T, Toiviainen P (2004a) MIDI toolbox: MATLAB tools for music research. University of Jyväskylä, available at: http://wwwjyufi/musica/miditoolbox
  9. Eerola T, Toiviainen P (2004b) The Digital Archive of Finnish Folk Tunes Jyväskylä: University of Jyväskylä, available at: http://wwwjyufi/musica/sks
  10. Friedman JH (1987) Exploratory projection pursuit. Journal of the American Sta- tistical Association 82(397):249-266
  11. Goto M, Hashiguchi H, Nishimura T, Oka R (2002) RWC Music Database: Popu- lar Classical and Jazz Music Databases. In Proceedings of the 3rd Interna- tional Conference on Music Information Retrieval (ISMIR 2002), pp. 287-288
  12. Huron D (1995) The Humdrum Toolkit: Reference Manual. Center for Computer Assisted Research in the Humanities, Menlo Park, CA
  13. Huron D (1996) The melodic arch in Western folksongs. Computing in Musicol- ogy 10:3-23
  14. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis. John Wiley & Sons, New York
  15. Juhász Z (2000) Contour analysis of Hungarian folk music in a multidimensional metric-space. Journal of New Music Research 29(1):71-83
  16. Klapuri A (2005) Automatic music transcription as we know it today. Journal of New Music Research 33(3):269-282
  17. Kohonen T (1995) Self-organizing maps. Springer-Verlag, Berlin Leman M, Lesaffre M, Tanghe K (2000) The IPEM toolbox manual. University of Ghent, IPEM
  18. Marillier CG (1983) Computer assisted analysis of tonal structure in the classical symphony. Haydn Yearbook 14:187-199
  19. Pampalk E, Dixon S, Widmer G (2004) Exploring music collections by browsing different views. Computer Music Journal 28(2):49-62
  20. Ponce de León PJ, Pérez-Sancho C, Iñesta J M (2004) A shallow description framework for music style recognition. Lecture Notes in Computer Science 3138:876-884
  21. RISM (1997) Répertoire international des sources musicales: International inven- tory of musical sources. In Series A/II Music manuscripts after 1600 [CD- ROM database].
  22. K. G. Saur Verlag, Munich
  23. Schaffrath H (1995) The Essen folksong collection in kern format [computer data- base]. Edited by D Huron. Center for Computer Assisted Research in the Hu- manities, Menlo Park, CA
  24. Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Chap- man and Hall, London
  25. Toiviainen P, Eerola T (2006) Autocorrelation in meter induction: The role of ac- cent structure. Journal of the Acoustical Society of America 119(2):1164- 1170
  26. Vos PG, Troost JM (1989) Ascending and descending melodic intervals: statisti- cal findings and their perceptual relevance. Music Perception 6(4):383-396