Computational melody analysis
Inside the Jazzomat. New Perspectives for Jazz Research
Abstract
AI
AI
This chapter introduces the principles and applications of computational melody analysis through MeloSpySuite/GUI, developed within the Jazzomat Research Project. It aims to accommodate both jazz researchers and computer scientists by providing mathematical details alongside verbal descriptions and examples. The focus includes basic mathematical concepts in music representation, feature extraction relevant to jazz research, and techniques for pattern searching.
References (24)
- Abeßer, J., Cano, E., Frieler, K., Pfleiderer, M., & Zaddach, W.-G. (2015). Score-informed analysis of intonation and pitch modulation in jazz so- los. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR). Málaga, Spain.
- Bregman, A. S. (1990). Auditory scene analysis. The perceptual organization of sound (2nd ed.). Cambridge: MIT-Press.
- Dowling, W. J., & Fujitani, D. (1971). Contour, interval, and pitch recogni- tion in memory for melodies. The Journal of the Acoustical Society of America, 49(2, Suppl. 2), 524-531.
- Forte, A. (1973). The structure of atonal music. New Haven: Yale University Press.
- Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music (pp. 149-180). New York: Academic Press.
- Frieler, K. (2007). Visualizing music on the metrical circle. In Proceedings of the 8th International Symposium on Music Information Retrieval, ISMIR 2007. Wien: OCG.
- Frieler, K. (2008). Metrical circle map and metrical Markov Chains. In A. Schneider (Ed.), Systematic and comparative musicology. Frank- furt/M., Bern: P. Lang.
- Frieler, K. (2009). Mathematik und kognitive Melodieforschung. Grundlagen für quantitative Modelle. Hamburg: Dr. Kovač.
- Frieler, K., & Lothwesen, K. (2012). Gestaltungsmuster und Ideenfluss in Jazzpiano-Improvisationen. Eine Pilotstudie zum Einfluss von Tempo, Tonalität und Expertise. In A. C. Lehmann, A. Jeßulat, & C. Wünsch (Eds.), Kreativität -Struktur und Emotion (pp. 256-265). Würzburg: Königshausen & Neumann.
- Frieler, K., & Pfleiderer, M. (2017). Onbeat oder offbeat? Überlegungen zur symbolischen Darstellung von Musik am Beispiel der metrischen Quantisierung. In M. Eibl & M. Gaedke (Eds.), INFORMATIK 2017 (pp. 111-125). Bonn: Gesellschaft für Informatik.
- Frieler, K., Pfleiderer, M., Abeßer, J., & Zaddach, W.-G. (2016). Midlevel analysis of monophonic jazz solos. A new approach to the study of improvisation. Musicae Scientiae, 20(2), 143-162.
- Harte, Christopher, Sandler, M., Samer, A., & Gómez, E. (2005). Sym- bolic representation of musical chords. A proposed syntax for text annotations. In Proceedings of the 6th International Conference on Mu- sic Information Retrieval (ISMIR) (pp. 66-71). Queen Mary, London. Retrieved from http://ismir2005.ismir.net/proceedings/1080.pdf
- Huron, D. (1996). The melodic arch in western folksongs. Computing in Musicology, 10, 3-23.
- Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: The MIT press.
- Müllensiefen, D., & Frieler, K. (2004). Cognitive adequacy in the mea- surement of melodic similarity. Algorithmic vs. human judgments. Computing in Musicology, 13, 147-176.
- Müllensiefen, D., Frieler, K., & Pfleiderer, M. (2009). The perception of accents in pop music melodies. Journal of New Music Research, 38(1), 19-44.
- Norgaard, M. (2014). How jazz musicians improvise. The central role of auditory and motor patterns. Music Perception: An Interdisciplinary Journal, 31(3), 271-287.
- Owens, T. (1974). Charlie Parker. Techniques of improvisation (Unpublished doctoral dissertation). University of California, Los Angeles.
- Parsons, D. (1975). The directory of tunes and musical themes. London: British Library.
- Schuller, G. (1958). Sonny Rollins and the challenge of thematic improvisa- tion. Jazz Review, November 58, 6-11.
- Schütz, M. (2015). Improvisation im Jazz. Eine empirische Untersuchung bei Jazzpianisten auf der Basis der Ideenflussanalyse. Hamburg: Dr. Kovač.
- Selfridge-Field, E. (Ed.). (1997). Beyond MIDI. The handbook of musical codes. Cambridge: The MIT Press.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423 and 623-656.
- Zanette, D. H. (2006). Zipf's law and the creation of musical context. Musicae Scientiae, 10, 3-18.