Academia.eduAcademia.edu

Outline

A fuzzy-genetic approach to breast cancer diagnosis

1999, Artificial Intelligence in Medicine

Abstract

The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies-fuzzy systems and evolutionary algorithms -so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they attain high classification performance (the best shown to date), with the possibility of attributing a confidence measure to the output diagnosis; second, the resulting systems involve a few simple rules, and are therefore (human-) interpretable. (C.A. Peñ a-Reyes), moshe.sipper@di.epfl.ch (M. Sipper) 0933-3657/99/$ -see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S 0 9 3 3 -3 6 5 7 ( 9 9 ) 0 0 0 1 9 -6 C.A. Peña-Reyes, M. Sipper / Artificial Intelligence in Medicine 17 (1999) 131-155 132

References (33)

  1. Alander JT. An indexed bibliography of genetic algorithms with fuzzy logic. In: Pedrycz W, editor. Fuzzy Evolutionary Computation. Dordrecht: Kluwer, 1997:299 -318.
  2. Bellazzi R, Ironi L, Guglielmann R, Stefanelli M. Qualitative models and fuzzy systems: an integrated approach for learning from data. Artif Intell Med 1998;14(1 -2):5 -28.
  3. Bennett KP, Mangasarian OL. Neural network training via linear programming. In: Pardalos PM, editor. Advances in Optimization and Parallel Computing. Elsevier, 1992:56 -7.
  4. Cordon O, Herrera F, Lozano M. On the combination of fuzzy logic and evolutionary computa- tion: a short review and bibliography. In: Pedrycz W, editor. Fuzzy Evolutionary Computation. Kluwer, 1997:33-56.
  5. Espinosa JJ, Vandewalle J. Constructing fuzzy models with linguistic integrity. IEEE Transactions on Fuzzy Systems 1999, submitted for publication.
  6. Fogel DB. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.
  7. Fogel DB, Wasson III EC, Boughton EM, Porto VW. Evolving artificial neural networks for screening features from mammograms. Artif Intell Med 1998;14(3):317.
  8. Fukuda T, Shimojima K. Fusion of fuzzy, NN, GA to the intelligent robotics. Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics, Vol. 3. IEEE, 1995:2892 - 2897.
  9. Heider H, Drabe T. Fuzzy system design with a cascaded genetic algorithm. Proceedings of 1997 IEEE International Conference on Evolutionary Computation. IEEE and IEEE Neural Network Council and Evolutionary Programming Society, 1997:585 -588.
  10. Herrera F, Lozano M, Verdegay JL. Generating fuzzy rules from examples using genetic al- gorithms. In: Bouchon-Meunier B, Yager RR, Zadeh LA, editors. Fuzzy Logic and Soft Comput- ing. World Scientific, 1995:11-20.
  11. Jang J-S R, Sun C-T. Neuro-fuzzy modeling and control. Proceedings of the IEEE. 1995 83 (3):378-406.
  12. Karr CL. Genetic algorithms for fuzzy controllers. AI Expert 1991;6(2):26 -33.
  13. Karr CL, Freeman LM, Meredith DL. Improved fuzzy process control of spacecraft terminal rendezvous using a genetic algorithm. In: Rodriguez G, editor. Proceedings of Intelligent Control and Adaptive Systems Conference, Vol. 1196. SPIE, 1990:274 -288.
  14. Kovalerchuk B, Triantaphyllou E, Ruiz JF, Clayton J. Fuzzy logic in computer-aided breast cancer diagnosis: analysis of lobulation. Artif Intell Med 1997;11(1):75 -85.
  15. Koza JR. Genetic Programming. Cambridge, MA: MIT Press, 1992.
  16. Lee K-M, Kwak D-H, Lee-Kwang H. Fuzzy inference neural network for fuzzy model tuning. IEEE Trans Syst Man Cybern 1996;26(4):637-45.
  17. Lee MA, Takagi H. Integrating design stages of fuzzy systems using genetic algorithms. 1993 IEEE International Conference on Fuzzy Systems. IEEE, 1993:612 -617.
  18. Lin C-T, Lee CSG. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans Fuzzy Syst 1994;2(1):46 -63.
  19. Mangasarian OL, Setiono R, Goldberg W-H. Pattern recognition via linear programming: Theory and application to medical diagnosis. In: Coleman TF, Li Y, editors. Large-Scale Numerical Optimization. SIAM, 1990:22-31.
  20. Mangasarian OL, Street WN, Wolberg WH. Breast cancer diagnosis and prognosis via linear programming. Mathematical Programming Technical Report 94-10, University of Wisconsin, 1994.
  21. Mendel JM. Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3):345-377, 1995.
  22. Merz CJ, Murphy PM. UCI repository of machine learning databases. http://www.ics.uci.edu/ mlearn/MLRepository.html, 1996.
  23. Michalewicz Z. Genetic Algorithms + Data Structures=Evolution Programs, 3rd edition. Heidel- berg: Springer-Verlag, 1996.
  24. Nawa NE, Hashiyama T, Furuhashi T, Uchikawa Y. A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator. Proceedings of 1997 IEEE International Conference on Evolutionary Computation. IEEE and IEEE Neural Network Council and Evolu- tionary Programming Society, 1997.
  25. Pen ˜a-Reyes CA, Sipper M. Evolving fuzzy rules for breast cancer diagnosis. Proceedings of 1998 International Symposium on Nonlinear Theory and Applications (NOLTA'98), Vol. 2. Lausanne: Presses Polytechniques et Universitaires Romandes, 1998:369 -372.
  26. Pedrycz W, Valente de Oliveira J. Optimization of fuzzy models. IEEE Trans Syst Man Cybern 1996;26(4):627-36.
  27. Setiono R. Extracting rules from pruned neural networks for breast cancer diagnosis. Artificial Intelligence in Medicine 1996:37-51.
  28. Setiono R, Liu H. Symbolic representation of neural networks. IEEE Computer 1996;29(3):71 -7.
  29. Sierra B, Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different ap- proaches. Artif Intell Med 1998;14(1-2):215 -36.
  30. Taha I, Ghosh J. Evaluation and ordering of rules extracted from feedforward networks. Proceed- ings of the IEEE International Conference on Neural Networks. 1997:221 -226.
  31. Vuorimaa P. Fuzzy self-organizing map. Fuzzy Sets Syst 1994;66:223 -31.
  32. Yager RR, Filev DP. Essentials of Fuzzy Modeling and Control. Wiley, 1994.
  33. Yager RR, Zadeh LA. Fuzzy Sets, Neural Networks, and Soft Computing. New York: Van Nostrand Reinhold, 1994. .