Hierarchical Kronecker tensor-product approximations
2000, Journal of Numerical Mathematics
https://doi.org/10.1515/1569395054012767Abstract
The goal of this work is the presentation of some new formats which are useful for the approximation of (large and dense) matrices related to certain classes of functions and nonlocal (integral, integrodifferential) operators, especially for high-dimensional problems. These new formats elaborate on a sum of few terms of Kronecker products of smaller-sized matrices (cf. ). In addition to this we need that the Kronecker factors possess a certain data-sparse structure. Depending on the construction of the Kronecker factors we are led to so-called "profile-low-rank matrices" or hierarchical matrices (cf. ). We give a proof for the existence of such formats and expound a gainful combination of the Kronecker-tensor-product structure and the arithmetic for hierarchical matrices.
References (39)
- M. Bebendorf: Approximation of boundary element matrices, Numer. Math. 86 (2000), 565-589.
- M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞ -coefficients. Numer. Math. 95 (2003) 1-28.
- G. Beylkin, M. M. Mohlenkamp: Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci. USA 99 (2002), 10246-10251.
- S. Börm and W. Hackbusch: Approximation of boundary element operators by adaptive H 2 -matrices. Max-Planck-Institut für Mathematik, Leipzig, Preprint 5, 2003.
- A. Brandt: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Comm. 65 (1991) 24-38.
- L. De Lathauwer, B. De Moor, and J. Vandewalle: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl. 21 (2000), 1253-1278.
- J. M. Ford and E. E. Tyrtyshnikov: Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related systems, SIAM J. Sci. Comp., Vol. 25, No. 3 (2003), 961-981.
- I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij: H-Matrix approximation for the operator expo- nential with applications. Numer. Math. 92 (2002), 83-111.
- I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij: H-Matrix approximation for elliptic solution operators in cylinder domains. East-West J. of Numer. Math. 9 (2001) 25-59.
- I.P. Gavrilyuk, W. Hackbusch, and B.N. Khoromskij: Data-sparse approximation to operator-valued functions of elliptic operators. Math. Comp. 73 (2004), no. 247, 1297-1324.
- I.P. Gavrilyuk, W. Hackbusch, and B.N. Khoromskij: Data-sparse approximation to a hierarchy of operator-valued functions. Preprint 20, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig 2003; Math. Comp. 2004 (to appear).
- I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij: Tensor-Product Approximation to Elliptic and Parabolic Solution Operators in Higher Dimensions. Preprint 83, Max-Planck-Institut Mathematik in den Naturwissenschaften, Leipzig 2003 (Computing, to appear).
- S. A. Goreinov, E. E. Tyrtyshnikov: The maximal-volume concept in approximation by low-rank ma- trices, Contemporary Mathematics 208 (2001), 47-51.
- S. A. Goreinov, E. E. Tyrtyshnikov, A. Y. Yeremin: Matrix-free iteration solution strategies for large dense linear systems, Numer. Linear Algebra Appl. 4 (1996) 1-22.
- S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin: A theory of pseudo-skeleton approximations, Linear Algebra Appl. 261 (1997), 1-21.
- L. Grasedyck: Existence and computation of a low Kronecker-rank approximant to the solution of a tensor system with tensor right-hand side. Computing 72 (2004), 247-265.
- L. Grasedyck and W. Hackbusch: Construction and arithmetics of H-matrices. Computing 70 (2003), 295-334.
- W. Hackbusch: A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices, Com- puting 62 (1999), 89-108.
- W. Hackbusch, B. N. Khoromskij: A sparse H-matrix arithmetic. II. Application to multi-dimensional problems, Computing 64 (2000), 21-47.
- W. Hackbusch and B. N. Khoromskij: A sparse H-matrix arithmetic: General complexity estimates. J. Comp. Appl. Math. 125 (2000) 479-501.
- W. Hackbusch and B. N. Khoromskij. Towards H-matrix approximation of the linear complexity. Op- erator Theory: Advances and Applications 121, Birkhäuser Verlag, 2001, 194-220.
- W. Hackbusch and B. N. Khoromskij. H-Matrix approximation on graded meshes. The Mathematics of Finite Elements and Applications X, MAFELAP 1999, J.R. Whiteman (ed.), Elsevier, Amsterdam, Chapter 19, 307-316, 2000.
- W. Hackbusch and B. N. Khoromskij: Hierarchical Kronecker Tensr-Product Approximation to a Class of Nonlocal Operators in High Dimensions. Preprint 16, Max-Planck-Institut für Mathematik, Leipzig, 2004 (Computing, to appear).
- W. Hackbusch, B. N. Khoromskij and R. Kriemann: Hierarchical matrices based on a weak admissi- bility criterion. Preprint Max-Planck-Institut für Mathematik, Leipzig, Preprint 2, 2003 (Computing, to appear).
- W. Hackbusch, B. N. Khoromskij and S. Sauter: On H 2 -matrices. In: Lectures on Applied Mathematics (H.-J. Bungartz, R. Hoppe, C. Zenger, eds.), Springer-Verlag, Berlin, 2000, 9-30.
- W. Hackbusch, B.N. Khoromskij, and E. Tyrtyshnikov: Hierarchical Kronecker tensor-product approx- imation, Preprint 35, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2003.
- W. Hackbusch and Z. P. Nowak: On the fast matrix multiplication in the boundary elements method by panel clustering, Numer. Math. 54 (1989) 463-491.
- I. Ibraghimov: Application of 3-way decomposition for matrix compression, Numer. Linear Algebra Appl. 9 (2002), 551-565.
- F. Keinert: Uniform approximation to |x| β by Sinc functions, Journal of Approximation Theory, Vol. 66, 44-52 (1991).
- M. V. Myagchilov, E. E. Tyrtyshnikov: A fast matrix-vector multiplier in discrete vortex method. Russian Journal of Numerical Analysis and Mathematical Modelling 7 (1992) 325-342.
- V. Rokhlin: Rapid solution of integral equations of classical potential theory, J. Comput. Physics 60 (1985), 187-207.
- F. Stenger: Numerical methods based on Sinc and analytic functions. Springer-Verlag, Heidelberg, 1993.
- X. Sun, N. P. Pitsianis: A matrix version of the fast multipole method, SIAM Review 43 (2001), 289-300.
- E. E. Tyrtyshnikov: Mosaic ranks and skeletons, in: Numerical analysis and its applications (L. Vulkov, J. Wasniewski, P. Yalamov, eds.). Lecture Notes in Computer Science 1196, Springer-Verlag, 1996, 505- 516.
- E. E. Tyrtyshnikov: Mosaic-skeleton approximations, Calcolo 33 (1996), 47-57.
- E. E. Tyrtyshnikov: Incomplete cross approximation in the mosaic-skeleton method, Computing 64 (2000), 367-380.
- E. E. Tyrtyshnikov: Kronecker-product approximations for some function-related matrices, Linear Al- gebra Appl., 379 (2004), 423-437.
- E. E. Tyrtyshnikov: Tensor approximations of matrices associated with asymptotically smooth func- tions, Sbor. Math. Vol. 194, No. 6 (2003) 147-160.
- C. F. Van Loan and N. P. Pitsianis: Approximation with Kronecker products, NATO Adv. Sci. Ser E Appl. Sci. 232, Kluwer: Dordrecht, 1993, 293-314.