Academia.eduAcademia.edu

Outline

HODLR2D: A new class of Hierarchical matrices

2022, ArXiv

https://doi.org/10.48550/ARXIV.2204.05536

Abstract

This article introduces HODLR2D, a new hierarchical low-rank representation for a class of dense matrices arising out of N body problems in two dimensions. Using this new hierarchical framework, we propose a new fast matrix-vector product that scales almost linearly. We apply this fast matrix-vector product to accelerate the iterative solution of large dense linear systems arising out of radial basis function interpolation and discretized integral equation. The space and computational complexity of HODLR2D matrix-vector products scales as O(pN log(N)), where p is the maximum rank of the compressed matrix subblocks. We prove that p ∈ O (log (N) log (log (N))), which ensures that the storage and computational complexity of HODLR2D matrix-vector products remain tractable for large N. Additionally, we also present the parallel scalability of HODLR2D as part of this article.

Key takeaways
sparkles

AI

  1. HODLR2D offers a new hierarchical low-rank representation for dense matrices from 2D N-body problems.
  2. Matrix-vector products in HODLR2D scale as O(pN log(N)) with p ∈ O(log(N) log(log(N))).
  3. HODLR2D improves computational efficiency, outperforming HODLR and H-matrix formats in both speed and storage.
  4. The algorithm demonstrates significant parallel scalability, enhancing performance on distributed systems.
  5. The study provides theorems supporting the growth of ranks for different interactions in 2D.

References (33)

  1. W. Hackbusch. Sparse matrix arithmetic based on H-matrices. part i: Introduction to H-matrices. Computing (Vienna/New York), 62(2):89-108, 1999.
  2. L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing (Vienna/New York), 70(4):295-334, 2003.
  3. Nail A Gumerov and Ramani Duraiswami. Fast radial basis function interpolation via preconditioned Krylov iteration. SIAM Journal on Scientific Computing, 29(5):1876-1899, 2007.
  4. V Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Journal of Computational Physics, 86(2):414-439, 1990.
  5. Sivaram Ambikasaran, Judith Yue Li, Peter K Kitanidis, and Eric Darve. Large-scale stochastic linear inversion using hierarchical matrices. Computational Geosciences, 17(6):913-927, 2013.
  6. Alexander Gray and Andrew Moore. N-body problems in statistical learning. Advances in neural information processing systems, 13, 2000.
  7. Sivaram Ambikasaran, Michael O'Neil, and Karan Raj Singh. Fast symmetric factorization of hierarchical ma- trices with applications, 2016.
  8. Josh Barnes and Piet Hut. A hierarchical O (n log n) force-calculation algorithm. nature, 324(6096):446-449, 1986.
  9. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Computational Physics, 73(2):325-348, 1987.
  10. Wolfgang Hackbusch and Z. Nowak. On the fast multiplication in the boundary element method by panel clustering. Numerische Mathematik, 54:463-491, 07 1989.
  11. Eric Darve. The fast multipole method: Numerical implementation. Journal of Computational Physics, 160(1):195-240, may 2000.
  12. William Fong and Eric Darve. The black-box fast multipole method. Journal of Computational Physics, 228(23):8712-8725, dec 2009.
  13. Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Wavelets, Multilevel Methods and Elliptic PDEs, pages 1-37. Oxford University Press, 1997.
  14. Rio Yokota, Huda Ibeid, and David Keyes. Fast multipole method as a matrix-free hierarchical low-rank approxi- mation. In International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, pages 267-286. Springer, 2015.
  15. Per-Gunnar Martinsson and Vladimir Rokhlin. An accelerated kernel-independent fast multipole method in one dimension. SIAM Journal on Scientific Computing, 29(3):1160-1178, 2007.
  16. Sivaram Ambikasaran and Eric Darve. An O(n log n) -fast direct solver for partial hierarchically semi-separable matrices. Journal of Scientific Computing, 57(3):477-501, apr 2013.
  17. Sivaram Ambikasaran and Eric Darve. The inverse fast multipole method, 2014.
  18. Shiv Chandrasekaran, Patrick Dewilde, Ming Gu, T Pals, and Alle-Jan van der Veen. Fast stable solver for sequentially semi-separable linear systems of equations. In International Conference on High-Performance Com- puting, pages 545-554. Springer, 2002.
  19. Adrianna Gillman, Patrick M Young, and Per-Gunnar Martinsson. A direct solver with O(n) complexity for integral equations on one-dimensional domains. Frontiers of Mathematics in China, 7(2):217-247, 2012.
  20. S. Börm. Construction of data-sparse H 2 -matrices by hierarchical compression. SIAM Journal on Scientific Computing, 31(3):1820-1839, 2009. cited By 26.
  21. Mario Bebendorf and Raoul Venn. Constructing nested bases approximations from the entries of non-local operators. Numerische Mathematik, 121(4):609-635, 2012.
  22. Yu Zhao, Dan Jiao, and Junfa Mao. Fast nested cross approximation algorithm for solving large-scale electro- magnetic problems. IEEE Transactions on Microwave Theory and Techniques, 67(8):3271-3283, 2019.
  23. Vaishnavi Gujjula and Sivaram Ambikasaran. A new nested cross approximation. arXiv preprint arXiv:2203.14832, 2022.
  24. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing, 70(1):1- 24, feb 2003.
  25. Kezhong Zhao, M.N. Vouvakis, and Jin-Fa Lee. The adaptive cross approximation algorithm for accelerated method of moments computations of emc problems. IEEE Transactions on Electromagnetic Compatibility, 47(4):763-773, 2005.
  26. Sivaram Ambikasaran, Karan Raj Singh, and Shyam Sundar Sankaran. Hodlrlib: A library for hierarchical matrices. Journal of Open Source Software, 4(34):1167, 2019.
  27. L Greengard and V Rokhlin. A fast algorithm for particle simulations. Journal of Computational Physics, 73(2):325-348, dec 1987.
  28. Sivaram Ambikasaran, Carlos Borges, Lise-Marie Imbert-Gerard, and Leslie Greengard. Fast, adaptive, high- order accurate discretization of the lippmann-schwinger equation in two dimensions. SIAM Journal on Scientific Computing, 38(3):A1770-A1787, jan 2016.
  29. Vaishnavi Gujjula and Sivaram Ambikasaran. A new directional algebraic fast multipole method based it- erative solver for the lippmann-schwinger equation accelerated with HODLR preconditioner. arXiv preprint arXiv:2204.00326, 2022.
  30. A. Ida, T. Iwashita, T. Mifune, and Y. Takahashi. Parallel hierarchical matrices with adaptive cross approxi- mation on symmetric multiprocessing clusters. Journal of Information Processing, 22(4):642-650, 2014. cited By 24.
  31. Patrick R Amestoy, Alfredo Buttari, Jean-Yves L'excellent, and Theo Mary. Performance and scalability of the block low-rank multifrontal factorization on multicore architectures. ACM Transactions on Mathematical Software (TOMS), 45(1):1-26, 2019.
  32. Kadir Akbudak, Hatem Ltaief, Aleksandr Mikhalev, and David Keyes. Tile low rank cholesky factorization for climate/weather modeling applications on manycore architectures. In International Supercomputing Conference, pages 22-40. Springer, 2017.
  33. Mohammad Izadi. Hierarchical matrix techniques on massively parallel computers. Ph.D. thesis, Max Planck Institute for Mathematics in the Sciences, 2012.