Classical complexity and quantum entanglement
2004, Journal of Computer and System Sciences
https://doi.org/10.1016/J.JCSS.2004.06.003Abstract
Generalizing a decision problem for bipartite perfect matching, Edmonds (J. Res. Natl. Bur. Standards 718(4) (1967) 242) introduced the problem (now known as the Edmonds Problem) of deciding if a given linear subspace of M(N) contains a non-singular matrix, where M(N) stands for the linear space of complex N × N matrices. This problem led to many fundamental developments in matroid theory, etc.
References (34)
- R.B. Bapat, Mixed discriminants of positive semidefinite matrices, Linear Algebra Appl. 126 (1989) 107-124.
- A.I. Barvinok, Computing mixed discriminants, mixed volumes, and permanents, Discrete Comput. Geom. 18 (1997) 205-237.
- A.I. Barvinok, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, Random Struct. Algorithms 14 (1999) 29-61.
- B. Beauzamy, Products of polynomials and a priori estimates for coefficients in polynomial decompositions: a sharp result, J. Symbolic Comput. 13 (1992) 463-472.
- B. Beauzamy, E. Bombieri, P. Enflo, H.L. Montgomery, Products of polynomials in many variables, J. Number Theory 36 (1990) 219-245.
- A. Ben-Tal, A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (4) (1998) 769-805.
- L.M. Bregman,A proof of convergence of the method of G.V. Šeleȋhovskiȋfor a problem with transportation-type constraints, Zh. vychisl. Mat. mat. Fiz. 7 (1967) 147-156 (in Russian).
- A. Chistov, G. Ivanyos, M. Karpinski, Polynomial time algorithms for modules over finite dimensional algebras, Proceedings of the ISSAC'97, Maui, Hawaii, USA, 1997, pp. 68-74.
- M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975) 285-290.
- J. Edmonds, System of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards 718 (4) (1967) 242-245.
- G.P. Egorychev, The solution of van der Waerden's problem for permanents, Adv. Math. 42 (1981) 299-305.
- D.I. Falikman, Proof of the van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29(6) 957. (1981) 931-938 (in Russian).
- J. Forster, A linear lower bound on the unbounded error probabilistic communication complexity, Sixteenth Annual IEEE Conference on Computational Complexity, 2001.
- M. Grötschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.
- L. Gurvits, Unbiased non-negative valued random estimator for permanents of complex positive semidefinite matrices, LANL Unclassified Report LAUR 02-5166, 2002.
- L. Gurvits, Van der Waerden Conjecture for Mixed Discriminants, arXiv.org preprint math.CO/o406420, 2004.
- L. Gurvits, Quantum Matching Theory (with new complexity-theoretic, combinatorial and topological insights on the nature of the Quantum Entanglement), arXiv.org preprint quant-ph/02010222, 2002.
- L. Gurvits, Determinantal polynomials, bipartite mixed quantum states, Wick formula and generalized permanental inequalities, 2002, in preparation.
- L. Gurvits, Classical deterministic complexity of Edmonds' problem and Quantum Entanglement, arXiv.org preprint quant-ph/0303055, 2003.
- L. Gurvits, H. Barnum, Largest separable balls around the maximally mixed bipartite quantum state, Phys. Rev. A 66 (2002) 062311.
- L. Gurvits, A. Samorodnitsky, A deterministic polynomial-time algorithm for approximating mised discriminant and mixed volume, in: Proceedings of the 32 ACM Symposium on Theory of Computing, ACM, New York, 2000.
- L. Gurvits, A. Samorodnitsky, A deterministic algorithm approximating the mixed discriminant and mixed volume, and a combinatorial corollary, Discrete Comput. Geom. 27 (2002) 531-550.
- L. Gurvits, P. Yianilos, The deflation-inflation method for certain semidefinite programming and maximum determinant completion problems, NECI Technical Report, 1998.
- V. Kabanets, R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Electron. Colloq. Comput. Complex 55 (2002).
- N. Linial, A. Samorodnitsky, A. Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents, in: Proceedings of the 30th ACM Symposium on Theory of Computing, ACM, New York, 1998.
- H. Minc, Permanents, Addison-Wesley, Reading, MA, 1978.
- A. Nemirovski, personal communication, 2001.
- E. Pascal, Die Determinanten, Teubner-Verlag, Leipzig, 1900.
- B. Reznick, An inequality for products of polynomials, Proc. Amer. Math. Soc. 117 (4) (1993) 1063-1073.
- G.W. Soules, The rate of convergence of Sinkhorn balancing, Linear Algebra Appl. 150 (1991) 3-40.
- L. Valiant, Completeness classes in algebra, in: Proceedings of the 11th ACM Symposium on Theory of Computing, 1979, pp. 249-261.
- D.B.Yudin,A.S. Nemirovskii, Informational complexity and efficient methods for the solution of convex extremal problems, Ekonom. i Mat. Metody 12 (1976) 357-369 (in Russian).
- D. Zeilberger, Chu's 1303 identity implies Bombieri's 1990 norm-inequality [Via an identity of Beauzamy and Degot], Amer. Math. Monthly (1994).
- A. Zvonkin, Matrix integrals and map enumeration: an accessible introduction, Math. Comput. Modelling 26 (8-10) (1997) 281-304.