Academia.eduAcademia.edu

Outline

Classical complexity and quantum entanglement

2004, Journal of Computer and System Sciences

https://doi.org/10.1016/J.JCSS.2004.06.003

Abstract

Generalizing a decision problem for bipartite perfect matching, Edmonds (J. Res. Natl. Bur. Standards 718(4) (1967) 242) introduced the problem (now known as the Edmonds Problem) of deciding if a given linear subspace of M(N) contains a non-singular matrix, where M(N) stands for the linear space of complex N × N matrices. This problem led to many fundamental developments in matroid theory, etc.

References (34)

  1. R.B. Bapat, Mixed discriminants of positive semidefinite matrices, Linear Algebra Appl. 126 (1989) 107-124.
  2. A.I. Barvinok, Computing mixed discriminants, mixed volumes, and permanents, Discrete Comput. Geom. 18 (1997) 205-237.
  3. A.I. Barvinok, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, Random Struct. Algorithms 14 (1999) 29-61.
  4. B. Beauzamy, Products of polynomials and a priori estimates for coefficients in polynomial decompositions: a sharp result, J. Symbolic Comput. 13 (1992) 463-472.
  5. B. Beauzamy, E. Bombieri, P. Enflo, H.L. Montgomery, Products of polynomials in many variables, J. Number Theory 36 (1990) 219-245.
  6. A. Ben-Tal, A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (4) (1998) 769-805.
  7. L.M. Bregman,A proof of convergence of the method of G.V. Šeleȋhovskiȋfor a problem with transportation-type constraints, Zh. vychisl. Mat. mat. Fiz. 7 (1967) 147-156 (in Russian).
  8. A. Chistov, G. Ivanyos, M. Karpinski, Polynomial time algorithms for modules over finite dimensional algebras, Proceedings of the ISSAC'97, Maui, Hawaii, USA, 1997, pp. 68-74.
  9. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975) 285-290.
  10. J. Edmonds, System of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards 718 (4) (1967) 242-245.
  11. G.P. Egorychev, The solution of van der Waerden's problem for permanents, Adv. Math. 42 (1981) 299-305.
  12. D.I. Falikman, Proof of the van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29(6) 957. (1981) 931-938 (in Russian).
  13. J. Forster, A linear lower bound on the unbounded error probabilistic communication complexity, Sixteenth Annual IEEE Conference on Computational Complexity, 2001.
  14. M. Grötschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.
  15. L. Gurvits, Unbiased non-negative valued random estimator for permanents of complex positive semidefinite matrices, LANL Unclassified Report LAUR 02-5166, 2002.
  16. L. Gurvits, Van der Waerden Conjecture for Mixed Discriminants, arXiv.org preprint math.CO/o406420, 2004.
  17. L. Gurvits, Quantum Matching Theory (with new complexity-theoretic, combinatorial and topological insights on the nature of the Quantum Entanglement), arXiv.org preprint quant-ph/02010222, 2002.
  18. L. Gurvits, Determinantal polynomials, bipartite mixed quantum states, Wick formula and generalized permanental inequalities, 2002, in preparation.
  19. L. Gurvits, Classical deterministic complexity of Edmonds' problem and Quantum Entanglement, arXiv.org preprint quant-ph/0303055, 2003.
  20. L. Gurvits, H. Barnum, Largest separable balls around the maximally mixed bipartite quantum state, Phys. Rev. A 66 (2002) 062311.
  21. L. Gurvits, A. Samorodnitsky, A deterministic polynomial-time algorithm for approximating mised discriminant and mixed volume, in: Proceedings of the 32 ACM Symposium on Theory of Computing, ACM, New York, 2000.
  22. L. Gurvits, A. Samorodnitsky, A deterministic algorithm approximating the mixed discriminant and mixed volume, and a combinatorial corollary, Discrete Comput. Geom. 27 (2002) 531-550.
  23. L. Gurvits, P. Yianilos, The deflation-inflation method for certain semidefinite programming and maximum determinant completion problems, NECI Technical Report, 1998.
  24. V. Kabanets, R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Electron. Colloq. Comput. Complex 55 (2002).
  25. N. Linial, A. Samorodnitsky, A. Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents, in: Proceedings of the 30th ACM Symposium on Theory of Computing, ACM, New York, 1998.
  26. H. Minc, Permanents, Addison-Wesley, Reading, MA, 1978.
  27. A. Nemirovski, personal communication, 2001.
  28. E. Pascal, Die Determinanten, Teubner-Verlag, Leipzig, 1900.
  29. B. Reznick, An inequality for products of polynomials, Proc. Amer. Math. Soc. 117 (4) (1993) 1063-1073.
  30. G.W. Soules, The rate of convergence of Sinkhorn balancing, Linear Algebra Appl. 150 (1991) 3-40.
  31. L. Valiant, Completeness classes in algebra, in: Proceedings of the 11th ACM Symposium on Theory of Computing, 1979, pp. 249-261.
  32. D.B.Yudin,A.S. Nemirovskii, Informational complexity and efficient methods for the solution of convex extremal problems, Ekonom. i Mat. Metody 12 (1976) 357-369 (in Russian).
  33. D. Zeilberger, Chu's 1303 identity implies Bombieri's 1990 norm-inequality [Via an identity of Beauzamy and Degot], Amer. Math. Monthly (1994).
  34. A. Zvonkin, Matrix integrals and map enumeration: an accessible introduction, Math. Comput. Modelling 26 (8-10) (1997) 281-304.