Academia.eduAcademia.edu

Outline

Underwater noise modelling for environmental impact assessment

https://doi.org/10.1016/J.EIAR.2015.11.012

Abstract

Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many EIAs do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

FAQs

sparkles

AI

What are the key impacts of anthropogenic underwater noise on aquatic life?add

The study indicates that human-generated underwater noise can cause both acute and chronic effects, including temporary hearing impairment and physiological stress, impacting key species like marine mammals and fish.

How does model selection affect predictions in underwater noise assessments?add

The research shows that inappropriate model selection can lead to significant discrepancies, exemplified by the spreading law model underestimating noise levels near the source while overestimating levels further away.

What role does input data quality play in underwater noise modelling accuracy?add

Higher quality bathymetric and sediment data is essential; inaccuracies in these inputs can lead to substantial deviations in predicted sound levels, as seen with differing sediment acoustic properties yielding up to 10 dB discrepancies.

How can tidal and temperature variations influence noise propagation predictions?add

The findings demonstrate that tidal variations can cause increases of 5-20 dB in predicted sound exposure, while temperature changes significantly impact sound speed, thereby affecting the efficiency of sound reflections at the water-seabed interface.

What novel techniques could improve underwater noise modelling in environmental assessments?add

Future research suggested includes time-domain modelling to understand impulsive noise risks better and techniques to model particle motion, as this component is crucial for assessing impacts on fish and invertebrates.

References (50)

  1. Biot, M.A., 1962. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34, 1254-1264. http://dx.doi.org/10.1121/1.1918315.
  2. Brekhovskikh, L.M., 1965. The average field in an underwater sound channel. Sov. Phys. Acoust. 11, 126-134.
  3. Brekhovskikh, L.M., Lysanov, I., 2003. Fundamentals of Ocean Acoustics. third ed. Springer-Verlag, NY http://dx.doi.org/10.1007/b97388.
  4. Collins, M.D., 1993. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736-1742. http://dx.doi.org/10.1121/1.406739.
  5. Collins, M.D., 1999. The stabilized self-starter. J. Acoust. Soc. Am. 106, 1724-1726. http:// dx.doi.org/10.1121/1.427921.
  6. De Soto, N.A., Delorme, N., Atkins, J., Howard, S., Williams, J., Johnson, M., 2013. Anthropo- genic noise causes body malformations and delays development in marine larvae. Sci. Rep. 3, 2831. http://dx.doi.org/10.1038/srep02831.
  7. Ellison, W.T., Southall, B.L., Clark, C.W., Frankel, A.S., 2012. A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv. Biol. 26, 21-28. http://dx.doi.org/10.1111/j.1523-1739.2011.01803.x.
  8. Etter, P.C., 2009. Review of ocean-acoustic models. Proc. IEEE Oceans 2009.
  9. Etter, P.C., 2013. Underwater Acoustic Modeling and Simulation. CRC Press, FL http://dx. doi.org/10.1201/b13906.
  10. Flatté, S.M., Dashen, R., Munk, W.H., Watson, K.M., Zachariasen, F., 1979. In: Flatté, S.M. (Ed.), Sound transmission through a fluctuating ocean. Cambridge University Press, UK. Fricke, M.B., Rolfes, R., 2015. Towards a complete physically based forecast model for un- derwater noise related to impact pile driving. J. Acoust. Soc. Am. 137, 1564-1575. http://dx.doi.org/10.1121/1.4908241.
  11. Frid, C., Andonegi, E., Depestele, J., Judd, A., Rihan, D., Rogers, S.I., Kenchington, E., 2012. The environmental interactions of tidal and wave energy generation devices. Environ. Impact Assess. Rev. 32, 133-139. http://dx.doi.org/10.1016/j.eiar.2011.06.002.
  12. Hamilton, E.L., 1972. Compressional-wave attenuation in marine sediments. Geophysics 37, 620-646. http://dx.doi.org/10.1190/1.1440287.
  13. Hamilton, E.L., 1976. Sound attenuation as a function of depth in the sea floor. J. Acoust. Soc. Am. 59, 528-535. http://dx.doi.org/10.1121/1.380910.
  14. Hamilton, E.L., 1980. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 68, 1313-1340. http://dx.doi.org/10.1121/1.385100.
  15. Hamilton, E.L., 1987. Acoustic properties of sediments. Acoust. Ocean Bottom 3-58.
  16. Hamilton, E.L., Bachman, R.T., 1982. Sound velocity and related properties of marine sediments. J. Acoust. Soc. Am. 72, 1891-1904. http://dx.doi.org/10.1121/1.388539.
  17. Hawkins, A.D., 1986. Underwater sound and fish behaviour. The Behaviour of Teleost FishesSpringer, pp. 114-151 http://dx.doi.org/10.1007/978-1-4684-8261-4-5.
  18. Holland, C.W., Dettmer, J., 2013. In situ sediment dispersion estimates in the presence of discrete layers and gradients. J. Acoust. Soc. Am. 133, 50-61. http://dx.doi.org/10. 1121/1.4765300.
  19. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., 2011. Computational ocean acous- tics. Springer, NY http://dx.doi.org/10.1063/1.4765904.
  20. Katsnelson, B., Petnikov, V., Lynch, J., 2012. Fundamentals of shallow water acoustics. Springer, NY http://dx.doi.org/10.1007/978-1-4419-9777-7.
  21. Lippert, T., von Estorff, O., 2014. On a hybrid model for the prediction of pile driving noise from offshore wind farms. Acta Acust. United Acust. 100, 244-253. http://dx.doi.org/ 10.3813/aaa.918717.
  22. MacGillivray, A.O., 2006. Acoustic Modelling Study of Seismic Airgun Noise in Queen Charlotte Basin MSc Thesis University of Victoria, British Columbia.
  23. McCauley, R.D., Fewtrell, J., Popper, A.N., 2003. High intensity anthropogenic sound dam- ages fish ears. J. Acoust. Soc. Am. 113, 638-642. http://dx.doi.org/10.1121/1.1527962.
  24. Merchant, N.D., Fristrup, K.M., Johnson, M.P., Tyack, P.L., Witt, M.J., Blondel, P., Parks, S.E., 2015. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257-265. http://dx.doi.org/ 10.1111/2041-210x.12330.
  25. Morley, E.L., Jones, G., Radford, A.N., 2014. The importance of invertebrates when consid- ering the impacts of anthropogenic noise. Proc. R. Soc. B Biol. Sci. 281, 20132683. http://dx.doi.org/10.1098/rspb.2013.2683.
  26. Nedelec, S.L., Radford, A.N., Simpson, S.D., Nedelec, B., Lecchini, D., Mills, S.C., 2014. An- thropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Sci. Rep. 4, 5891. http://dx.doi.org/10.1038/srep05891.
  27. NOAA, 2013. Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals. National Oceanic and Atmospheric Administration, USA.
  28. NOAA, 2015. Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing. National Oceanic and Atmospheric Administration, USA.
  29. Nowacek, D.P., Thorne, L.H., Johnston, D.W., Tyack, P.L., 2007. Responses of cetaceans to anthropogenic noise. Mammal Rev. 37, 81-115. http://dx.doi.org/10.1111/j.1365- 2907.2007.00104.x.
  30. Popper, A.N., Fay, R.R., 2011. Rethinking sound detection by fishes. Hear. Res. 273, 25-36. http://dx.doi.org/10.1016/j.heares.2009.12.023.
  31. Popper, A.N., Hawkins, A.D., Fay, R.R., Mann, D.A., Bartol, S., Carlson, T.J., Coombs, S., Ellison, W.T., Gentry, R.L., Halvorsen, M.B., Løkkeborg, S., Rogers, P.H., Southall, B.L., Zeddies, D.G., Tavolga, W.N., 2014. ASA S3/SC1.4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI. American National Standards Institute http://dx.doi.org/10.1007/978-3-319-06659-2.
  32. Porter, M.B., 1992. The KRAKEN Normal Mode Program. Tech. Rep. NRL/MR/5120-92- 6920. Naval Research Laboratory, Washington, DC.
  33. Porter, M.B., Liu, Y.-C., 1994. Finite-element ray tracing. Theor. Comput. Acoust. 2, 947-956.
  34. Reinhall, P.G., Dahl, P.H., 2011. Underwater mach wave radiation from impact pile driv- ing: theory and observation. J. Acoust. Soc. Am. 130, 1209-1216. http://dx.doi.org/ 10.1121/1.3614540.
  35. Rolland, R.M., Parks, S.E., Hunt, K.E., Castellote, M., Corkeron, P.J., Nowacek, D.P., Wasser, S.K., Kraus, S.D., 2012. Evidence that ship noise increases stress in right whales. Proc. R. Soc. B Biol. Sci. 279, 2363-2368. http://dx.doi.org/10.1098/rspb.2011.2429.
  36. Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., Popper, A.N., 2010. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419-427. http://dx.doi.org/10.1016/j.tree.2010.04.005.
  37. Southall, B., Bowles, A., Ellison, W., Finneran, J.J., Gentry, R., Greene, C.R.J., Kastak, D., Ketten, D., Miller, J., Nachtigall, P., Richardson, W.J., Thomas, J., Tyack, P., 2007. Marine mammal noise-exposure criteria: initial scientific recommendations. Aquat. Mamm. 33, 411-521. http://dx.doi.org/10.1578/AM.33.4.2007.411.
  38. Thompson, P.M., Hastie, G.D., Nedwell, J., Barham, R., Brookes, K.L., Cordes, L.S., Bailey, H., McLean, N., 2013. Framework for assessing impacts of pile-driving noise from off- shore wind farm construction on a harbour seal population. Environ. Impact Assess. Rev. 43, 73-85. http://dx.doi.org/10.1016/j.eiar.2013.06.005.
  39. Thorp, W.H., 1967. Analytic description of the low-frequency attenuation coefficient. J. Acoust. Soc. Am. 42, 270. http://dx.doi.org/10.1121/1.1910566.
  40. Urick, R.J., 1983. Principles of Underwater Sound. third ed. McGraw-Hill, NY.
  41. Wales, S.C., Heitmeyer, R.M., 2002. An ensemble source spectra model for merchant ship- radiated noise. J. Acoust. Soc. Am. 111, 1211-1231. http://dx.doi.org/10.1121/1. 1427355.
  42. Weston, D.E., 1971. Intensity-range relations in oceanographic acoustics. J. Sound Vib. 18, 271-287. http://dx.doi.org/10.1016/0022-460X(71)90350-6.
  43. Williams, R., Wright, A.J., Ashe, E., Blight, L.K., Bruintjes, R., Canessa, R., Clark, C.W., Cullis- Suzuki, S., Dakin, D.T., Erbe, C., Hammond, P.S., Merchant, N.D., O'Hara, P.D., Purser, J., Radford, A.N., Simpson, S.D., Thomas, L., Wale, M.A., 2015. Impacts of anthropogenic noise on marine life: publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Manag. 115, 17-24. http://dx.doi.org/10. 1016/j.ocecoaman.2015.05.021.
  44. Wright, A.J., Aguilar de Soto, N., Baldwin, A.L., Bateson, M., Beale, C., Clark, C., Deak, T., Edwards, E.F., Fernández, A., Godinho, A., Hatch, L., Kakuschke, A., Lusseau, D., Martineau, D., Romero, L.M., Weilgart, L., Wintle, B., Notarbartolo di Sciara, G., Martin, V., 2007. Do marine mammals experience stress related to anthropogenic noise? Int. J. Comp. Psychol. 20, 274-316. http://dx.doi.org/10.1002/ana.22521.
  45. Wysocki, L.E., Dittami, J.P., Ladich, F., 2006. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 128, 501-508. http://dx.doi.org/10.1016/j.biocon. 2005.10.020.
  46. Zampolli, M., Nijhof, M.J.J., de Jong, C.A.F., Ainslie, M.A., Jansen, E.H.W., Quesson, B.A.J., 2013. Validation of finite element computations for the quantitative prediction of un- derwater noise from impact pile driving. J. Acoust. Soc. Am. 133, 72-81. http://dx.doi. org/10.1121/1.4768886.
  47. Ziolkowski, A., 1970. A method for calculating the output pressure waveform from an air gun. Geophys. J. Int. 21, 137-161. http://dx.doi.org/10.1111/j.1365-246x.1970. tb01773.x.
  48. Adrian Farcas has a PhD in Applied Mathematics from the University of Leeds on the nu- merical modelling of inverse problems. Between 2004 and 2013 he carried out research on modelling physical flow processes in porous rocks at the University of Cambridge BP Insti- tute. He is now an Ecosystem Modeller at Cefas where he has been responsible for devel- oping modelling methodologies for the management of multispecies fisheries, coastal hydrodynamics processes and the geospatial mapping of underwater noise.
  49. Paul M. Thompson is a Professor in Zoology within the University of Aberdeen's Institute of Biological & Environmental Science. He is based at the University's Lighthouse Field Sta- tion in the Moray Firth, where his group uses long-term individual based studies to study responses of marine mammal and seabird populations to environmental change. These studies are currently being developed to assess the population consequences of noise dis- turbance associated with the construction of offshore windfarms.
  50. Nathan D. Merchant leads the Noise and Bioacoustics team at Cefas, and has a PhD in un- derwater acoustics from the University of Bath. He is a scientific advisor on underwater noise to the UK Department for Environment, Food & Rural Affairs (Defra) and oversees