Academia.eduAcademia.edu

Outline

ENDOMORPHISM RINGS OF MODULES OVER PRIME RINGS

2015, Taiwanese Journal of Mathematics

https://doi.org/10.11650/TJM.19.2015.5111

Abstract

Endomorphism rings of modules appear as the center of a ring, as the fix ring of ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain * -prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primness of the endomorphism ring. The contours of a possible example of a * -prime module whose endomorphism ring is not prime are traced.

References (17)

  1. S. A. Amitsur. Rings of quotients and Morita contexts. J. Algebra, 17:273-298, 1971.
  2. G. M. Bergman and I. M. Isaacs. Rings with fixed-point-free group actions. Proc. London Math. Soc. (3), 27:69-87, 1973.
  3. L. Bican, P. Jambor, T. Kepka, and P. Němec. Prime and coprime modules. Fund. Math., 107(1):33- 45, 1980.
  4. Inês Borges and Christian Lomp. Irreducible actions and compressible modules. J. Algebra Appl., 10(1):101-117, 2011.
  5. M. Cohen. Hopf algebras acting on semiprime algebras. Contemp. Math., 43:49-61, 1985.
  6. M. Cohen and L.H. Rowen. Group graded rings. Comm. Algebra, 11:1253-1270, 1983.
  7. Jacques Dixmier. Enveloping algebras, volume 11 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation.
  8. Joe W. Fisher and Susan Montgomery. Semiprime skew group rings. J. Algebra, 52(1):241-247, 1978.
  9. A. Haghany and M. R. Vedadi. Endoprime modules. Acta Math. Hungar., 106(1-2):89-99, 2005.
  10. Christian Lomp. When is a smash product semiprime? A partial answer. J. Algebra, 275(1):339-355, 2004.
  11. Christian Lomp. A central closure construction for certain algebra extensions. Applications to Hopf actions. J. Pure Appl. Algebra, 198(1-3):297-316, 2005.
  12. Christian Lomp. Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions. J. Algebra Appl., 4(1):77-97, 2005.
  13. Louis Rowen. Some results on the center of a ring with polynomial identity. Bull. Amer. Math. Soc., 79:219-223, 1973.
  14. Patrick F. Smith. Modules with many homomorphisms. J. Pure Appl. Algebra, 197(1-3):305-321, 2005.
  15. R. Wisbauer. Modules and algebras: bimodule structure and group actions on algebras., volume 81 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Addison Wesley Longman Ltd., Harlow, Essex, 1996.
  16. J. Zelmanowitz. A class of modules with semisimple behavior. In A. Facchini and C. Menini, editors, Abelian Groups and Modules., pages 491-400. Kluwer Acad. Publ., 1995.
  17. Julius Martin Zelmanowitz. Endomorphism rings of torsionless modules. J. Algebra, 5:325-341, 1967.