ENDOMORPHISM RINGS OF MODULES OVER PRIME RINGS
2015, Taiwanese Journal of Mathematics
https://doi.org/10.11650/TJM.19.2015.5111Abstract
Endomorphism rings of modules appear as the center of a ring, as the fix ring of ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain * -prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primness of the endomorphism ring. The contours of a possible example of a * -prime module whose endomorphism ring is not prime are traced.
References (17)
- S. A. Amitsur. Rings of quotients and Morita contexts. J. Algebra, 17:273-298, 1971.
- G. M. Bergman and I. M. Isaacs. Rings with fixed-point-free group actions. Proc. London Math. Soc. (3), 27:69-87, 1973.
- L. Bican, P. Jambor, T. Kepka, and P. Němec. Prime and coprime modules. Fund. Math., 107(1):33- 45, 1980.
- Inês Borges and Christian Lomp. Irreducible actions and compressible modules. J. Algebra Appl., 10(1):101-117, 2011.
- M. Cohen. Hopf algebras acting on semiprime algebras. Contemp. Math., 43:49-61, 1985.
- M. Cohen and L.H. Rowen. Group graded rings. Comm. Algebra, 11:1253-1270, 1983.
- Jacques Dixmier. Enveloping algebras, volume 11 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation.
- Joe W. Fisher and Susan Montgomery. Semiprime skew group rings. J. Algebra, 52(1):241-247, 1978.
- A. Haghany and M. R. Vedadi. Endoprime modules. Acta Math. Hungar., 106(1-2):89-99, 2005.
- Christian Lomp. When is a smash product semiprime? A partial answer. J. Algebra, 275(1):339-355, 2004.
- Christian Lomp. A central closure construction for certain algebra extensions. Applications to Hopf actions. J. Pure Appl. Algebra, 198(1-3):297-316, 2005.
- Christian Lomp. Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions. J. Algebra Appl., 4(1):77-97, 2005.
- Louis Rowen. Some results on the center of a ring with polynomial identity. Bull. Amer. Math. Soc., 79:219-223, 1973.
- Patrick F. Smith. Modules with many homomorphisms. J. Pure Appl. Algebra, 197(1-3):305-321, 2005.
- R. Wisbauer. Modules and algebras: bimodule structure and group actions on algebras., volume 81 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Addison Wesley Longman Ltd., Harlow, Essex, 1996.
- J. Zelmanowitz. A class of modules with semisimple behavior. In A. Facchini and C. Menini, editors, Abelian Groups and Modules., pages 491-400. Kluwer Acad. Publ., 1995.
- Julius Martin Zelmanowitz. Endomorphism rings of torsionless modules. J. Algebra, 5:325-341, 1967.