Academia.eduAcademia.edu

Outline

On the endomorphism ring of the canonical module

Journal of Mathematics of Kyoto University

https://doi.org/10.1215/KJM/1250521156

Abstract
sparkles

AI

This paper investigates the structure of the endomorphism ring of the canonical module over a local ring. It focuses on necessary and sufficient conditions for a Noetherian ring to have a canonical module and explores the connections between local cohomology and properties of quasi-Gorenstein rings. Key results include equivalences for local rings of dimension two and the implications on their endomorphism rings.

References (7)

  1. Y . A oyam a, On the depth and the projective dimension of the canonical module, Jap an . J. Math., 6 (1980), 61-66.
  2. Y . A oyam a, Som e basic re su lts o n canonical modules, J . Math. Kyoto U n iv., 23 (1983), 85-94.
  3. S. Goto, On the Cohen-Macaulayfication of certain Buchsbaum rings, Nagoya Math. J., 80 (1980), 107-116.
  4. S. G oto, Approximately Cohen-Macaulay rings, J. A lg eb ra, 7 6 (1982), 214-225.
  5. A. Grothendieck, Local cohomology, Lect. Notes Math. 41, Springer Verlag, 1967,
  6. J . Herzog, E. Kunz et al., Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes Math. 238, Springer Verlag, 1971.
  7. T. Ogoma, Existence -of dualizing com plexes, J. Math. Kyoto Univ., 24 (1984), 27-48.