1997: Probabilistically Reliable Default Reasoning
Abstract
This paper superimposes an assumption generation mechanism (AGM) and a lower bound propagation mechanism (LBM) on default reasoning. AGM generates minimal probabilistic assumptions which are needed to derive default conclusions safely, and LBM supplies (approximately) tight lower probability bounds of the conclusions. Together both mechanisms make default reasoning probabilistically reliable. The underlying logical framework is an extension of Adams' probability logic P by irrelevance and contraposition assumptions, called the system P DP. There is an exact correspondence between Poole-extensions and P DP-extensions. The procedure for P DPentailment is comparable in complexity with Poole's procedure.
References (32)
- E.W. Adams, 'The logic of 'almost all", Journal of Philosophical Logic, 3, 3-17, (1974).
- E.W. Adams, The Logic of Conditionals, Reidel, Dordrecht, 1975.
- E.W. Adams, 'A note on comparing probabilistic and modal logics of conditionals', Theoria, 43, 186-194, (1977).
- E.W. Adams, 'On the logic of high probability', Journal of Philosophical Logic, 15, 255-279, (1986).
- F. Bacchus, Representing and Reasoning with Probabilistic Knowledge, MIT Press, Cambridge, Mass., 1990.
- F. Bacchus et al., 'Statistical foundations for default reasoning', in Pro- ceedings IJCAI-93, volume 1, pp. 563-569, Santa Mateo, (1993).
- D. Bamber, 'Entailment in probability of thresholded generalizations'. manuscript, 1996.
- G. Brewka, 'Preferred subtheories: an extended logical framework for default reasoning', in Proceedings IJCAI-89, pp. 1043-1048, Detroit, MI, (1989).
- R. Carnap, Logical Foundations of Probability, University of Chicago Press, second edn., 1962.
- D.W. Etherington, S. Kraus, and D. Perlis, 'Nonmonotonicity and the scope of reasoning', Artificial Intelligence, 52, 221-261, (1991).
- A.M. Frisch and P. Haddawy, 'Anytime deduction for probabilistic logic', Artificial Intelligence, 69, 93-122, (1994).
- H. Geffner and J. Pearl, 'A framework for reasoning with defaults', in Knowledge Representation and Defeasible Reasoning, eds., H.E. Kyburg et al., 69-87, Kluwer, The Netherlands, (1990).
- M. Goldszmidt et al., 'A maximum entropy approach to nonmonotonic reasoning', in Proc. Nat. Conf. on AI (AAAI-90), pp. 646-652, (1990).
- M. Goldszmidt and J. Pearl, 'Qualitative probabilities for default rea- soning, belief revision and causal modeling', Artificial Intelligence, 84, 57-112, (1996).
- J. Y. Halpern, 'An analysis of first-order logics of probability', Artificial Intelligence, 46, 311-350, (1990).
- G. Kleiter, 'Bayesian diagnosis in expert systems', Artificial Intelligence, 54, 1-32, (1992).
- D. Lehmann and M. Magidor, 'What does a conditional knowledge base entail?', Artificial Intelligence, 55, 1-60, (1992).
- A. Y. Levy and Y. Sagiv, 'Exploiting irrelevance reasoning to guide problem solving', in Proceedings IJCAI-93, pp. 138-144, Santa Mateo, (1993).
- D. McDermott and J. Doyle, 'Non-monotonic logic I', Artificial Intelli- gence, 13, 41-72, (1980).
- R.C. Moore, 'Semantic considerations on nonmonotonic logic', Artificial Intelligence, 25, 75-94, (1985).
- N.J. Nilsson, 'Probabilistic logic', Artificial Intelligence, 28, 71-87, (1986).
- J. Pearl, 'Fusion, propagation, and structuring in belief networks', Ar- tificial Intelligence, 29, 241-288, (1986).
- J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA, 1988.
- J. Pearl, 'System Z: A natural ordering of defaults woth tractable ap- plications to default reasoning', in Proceedings of Theoretical Aspects of reasoning about Knowledge, pp. 121-135, Santa Mateo, CA, (1990).
- J. Pollock, 'Justification and defeat', Artificial Intelligence, 67, 377-407, (1994).
- D. Poole, 'A logical framework for default reasoning', Artificial Intelli- gence, 36, 27-47, (1988).
- D. Poole, 'Compiling a default reasoning system into prolog', New Gen- eration Computing, 9, 3-38, (1991).
- D. Poole, 'The effect of knowledge on belief: Conditioning, specifity and the lottery paradox in default reasoning', Artificial Intelligence, 49, 281-307, (1991).
- R. Reiter, 'A logic for default reasoning', Artificial Intelligence, 13, 81- 132, (1980).
- G. Schurz, 'Probabilistic justification of default reasoning', in KI-94: Advances in Artificial Intelligence, eds., B. Nebel and L. Dreschler- Fischer, pp. 248-259, Berlin, (1994). Springer.
- G. Schurz, 'Most general first order theorems are not recursively enu- merable', Theoretical Computer Science, 147, 149-163, (1995).
- G. Schurz, 'Probabilistic default reasoning based on irrelevance and sig- nificance assumptions'. Paper submitted, 1997.