The curse of simultaneity
2012, Proceedings of the 3rd Innovations in …
https://doi.org/10.1145/2090236.2090242Abstract
Typical models of strategic interactions in computer science use simultaneous move games. However, in applications simultaneity is often hard or impossible to achieve. In this paper, we study the robustness of the Nash Equilibrium when the assumption of simultaneity is dropped. In particular we propose studying the sequential price of anarchy: the quality of outcomes of sequential versions of games whose simultaneous counterparts are prototypical in algorithmic game theory. We study different classes of games with high price of anarchy, and show that the subgame perfect equilibrium of their sequential version is a much more natural prediction, ruling out unreasonable equilibria, and leading to much better quality solutions.
References (28)
- REFERENCES
- N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA '07, pages 189-198, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.
- E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The Price of Stability for Network Design with Fair Cost Allocation. In 45th Symposium on Foundations of Computer Science (FOCS 2004), pages 295-304. IEEE Computer Society, 2004.
- J. Bae, E. Beigman, R. Berry, M. L. Honig, and R. Vohra. On the efficiency of sequential auctions for spectrum sharing. 2009 International Conference on Game Theory for Networks, pages 199-205, May 2009.
- M. Balcan, A. Blum, and Y. Mansour. The price of uncertainty. EC'09, 2009.
- M. F. Balcan. Leading dynamics to good behavior. SIGecom Exch., 10:19-22, June 2011.
- M.-F. Balcan, A. Blum, and Y. Mansour. Circumventing the price of anarchy: Leading dynamics to good behavior. In ICS, pages 200-213, 2010.
- M. Charikar, H. Karloff, C. Mathieu, J. Naor, and M. Saks. Online multicast with egalitarian cost sharing. In SPAA 2008: Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 70-76. ACM, 2008.
- C. Chekuri, J. Chuzhoy, L. Lewin-Eytan, J. Naor, and A. Orda. Non-Cooperative Multicast and Facility Location Games. IEEE Journal on Selected Areas in Communications, 25(6):1193-1206, 2007.
- C. Chung, K. Ligett, K. Pruhs, and A. Roth. The price of stochastic anarchy. In Proceedings of the 1st International Symposium on Algorithmic Game Theory, SAGT '08, pages 303-314, Berlin, Heidelberg, 2008. Springer-Verlag.
- A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost sharing connection games. In 8th ACM Conference on Electronic Commerce (EC-2007), pages 84-92. ACM, 2007.
- A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC '04, pages 604-612, New York, NY, USA, 2004. ACM.
- D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
- P. Goldberg, C. Papadimitriou, and R. Savani. The complexity of the homotopy method, equilibrium selection, and lemke-howson solutions. FOCS 2011, 2011.
- J. Harsanyi and R. Selten. A general theory of equilibrium selection in games. Cambridge:MIT Press, 1988.
- T. Hart and D. Edwards. The tree prune (tp) algorithm. Technical report, M.I.T. Artificial Intelligence Project Memo # 30, 1961.
- P.-J. Herings and R. Peeters. Homotopy methods to compute equilibria in gametheory. Economic Theory, 42(1), 2010.
- D. Knuth and R. Moore. An analysis of alpha-beta pruning. Artificial Intelligence, page 293â ȂŞ326, 1975.
- E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Symposium on Theoretical Aspects of Computer Science, pages 404-413, 1999.
- J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel machines. Math. Program., 46:259-271, February 1990.
- A. Montanari and A. Saberi. Convergence to equilibrium in local interaction games. SIGecom Exch., 8:11:1-11:4, July 2009.
- R. Paes Leme, V. Syrgkanis, and Éva Tardos. Sequential auctions and externalities. In Proceedings of the 23rd ACM Symposium on Discrete Algorithms (SODA'12). 2012, 2012.
- D. Parkes. Online Mechanisms. Algorithmic Game Theory (eds, N. Nisan et al), 2007.
- A. Skopalik and B. Vöcking. Inapproximability of pure nash equilibria. Proceedings of the fourtieth annual ACM symposium on Theory of computing -STOC '08, page 355, 2008.
- V. Syrgkanis. The Complexity of Equilibria in Cost Sharing Games. In WINE 2010: Proceedings of the 6th Workshop on Internet and Network Economics, pages 366-377, 2010.
- B. Vocking. Selfish load balancing. In Algorithmic Game Theory, chapter 20. Cambridge University Press, 2007.
- J. von Neumann. Zur Theories der Gesellschaftsspiele. Mathematische Annalen 100:295-320, 1928, English translation by S. Bergmann in R. D. Luce, A. W. Tucker (eds.), Contributions to the Theory of Games IV (1959), pp. 13-42, Princeton U. Press.
- E. F. F. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In Fifth International Congress of Mathematicians, vol. II, pages 501-504, 1913.