Quantum groupoids and dynamical categories
https://doi.org/10.1016/J.JALGEBRA.2006.01.001Abstract
In this paper we realize the dynamical categories introduced in our previous paper as categories of modules over bialgebroids; we study the bialgebroids arising in this way. We define quasitriangular structure on bialgebroids and present examples of quasitriangular bialgebroids related to the dynamical categories. We show that dynamical twists over an arbitrary base give rise to bialgebroid twists.
References (30)
- J. Balog, L. Dabrowski, and L. Fehér: Classical r-matrix and exchange algebra in WZNW and Toda field theories, Phys. Lett. B, 244 # 2 (1990) 227-234.
- A. Alekseev, A. Lachowska: Invariant * -product on coadjoint orbits and the Shapovalov pairing, arXiv: math.QA/0308100.
- A. Alekseev, E. Meinrenken: The non-commutative Weil algebra, Invent. Math. 135 (2000) 135-172.
- V. Drinfeld: Quantum Groups, in Proc. Int. Congress of Mathematicians, Berkeley, 1986, ed. A. V. Gleason, AMS, Providence (1987) 798-820.
- V. Drinfeld: Quasi-Hopf algebras, Leningrad Math.J. 1 (1990) 1419-1457.
- J. Donin, A. Mudrov: Dynamical Yang-Baxter equation and quantum vector bundles, arXiv: math.QA/0306028.
- J. Donin, A. Mudrov: Reflection Equation, Twist, and Equivariant Quantization, Isr. J. Math., 136 (2003) 11-28.
- B. Enriquez, P. Etingof: Quantization of Alekseev-Meinrenken dynamical r-matrices, preprint math.QA/0302067.
- B. Enriquez, P. Etingof: Quantization of classical dynamical r-matrices with non- abelian base, preprint math.QA/0311224.
- P. Etingof, O. Schiffmann: Lectures on the dynamical Yang-Baxter equation. Quan- tum Groups and Lie theory, London Math. Soc. Lecture Note 290 (2001) 89-129.
- P. Etingof, O. Schiffmann: On a moduli space of classical dynamical r-matrices, Math. Res. Lett. 9 (2001) 157-170.
- P. Etingof, A. Varchenko: Geometry and classification of solutions to the classical dynamical Yang-Baxter equation, Commun. Math. Phys. 192 (1998) 77-120.
- P. Etingof, A. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1999) 19-52.
- G. Felder: Conformal field theories and integrable models associated to elliptic curves, Proc. ICM Zurich, (1994) 1247-1255.
- L. Fehér and I. Marshall: On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self dual Lie algebras, arXiv:math.QA/0208159.
- L. Faddeev, N. Reshetikhin, and L. Takhtajan: Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193-226.
- S. Gelfand, D. Kazhdan: Examples of tensor categories, Invent. Math. 109 (1992) 595-617.
- Ch. Kassel: Quantum groups, Springer, NY 1995.
- K-Schw] Y. Kosmann-Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995) 153-165.
- E. Karolinsky, K. Muzykin, A. Stolin, V. Tarasov: Dynamical Yang-Baxter equa- tions, quasi-Poisson homogeneous spaces, and quantization, arXiv:math.QA/0309203.
- P. P. Kulish, E. K. Sklyanin: Algebraic structure related to the reflection equation, J. Phys. A 25 (1992) 5963-5976.
- J.-H. Lu: Hopf algebroids and quantum groupoids, Int. J. Math., 7 (1996) 47-70.
- S. Majid: Foundations of quantum group theory, Cambridge University Press, 1995.
- V. Ostrik: Module categories, weak Hopf algebras, and modular invariants, Transform. Group, 8 (2003) 177-206.
- K.C.H. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids Duke Math. J. 73 (1994) 415-452.
- O. Schiffmann: On classification of dynamical r-matrices, Math. Res. Lett. 5 (1998) 13-30.
- N. Reshetikhin, M. Semenov-Tian-Shansky: Quantum R-matrices and factorization problem, J. Geom. Phys. 5 (1988), 533-550.
- K. Szlachányi: Finite quantum groupoids and inclusions of finite type, Mathematical physics in mathematics and physics (Sienna, 2000) 393-407, in Fields Ins. Commun. 30, Amer. Math. Soc., Providence, RI, 2001.
- P. Xu: Quantum groupoids, Commun. Math. Phys., 216 (2001) 539-581.
- P. Xu: Quantum Dynamical Yang-Baxter Equation Over a Nonabelian basis, Com- mun. Math. Phys. 226 (2002) 475-495.