Abstract
We present a formal algebraic language to deal with quantum deformations of Lie-Rinehart algebras - or Lie algebroids, in a geometrical setting. In particular, extending the ice-breaking ideas introduced by Xu in [Ping Xu, "Quantum groupoids", Comm. Math. Phys. 216 (2001), 539-581], we provide suitable notions of "quantum groupoids". For these objects, we detail somewhat in depth the formalism of linear duality; this yields several fundamental antiequivalences among (the categories of) the two basic kinds of "quantum groupoids". On the other hand, we develop a suitable version of a "quantum duality principle" for quantum groupoids, which extends the one for quantum groups - dealing with Hopf algebras - originally introduced by Drinfeld (cf. [V. G. Drinfeld, "Quantum groups", Proc. ICM (Berkeley, 1986), 1987, pp. 798-820], sec. 7) and later detailed in [F. Gavarini, "The quantum duality principle", Annales de l'Institut Fourier 53 (2002), 809-834].
References (34)
- R. Almeida, A. Kumpera, Structure produit dans la catégorie des algébroides de Lie, Ann. Acad. Brasil Cienc. 53 (1981), 247-250.
- F. W. Anderson, K. R. Fuller, Rings and categories of modules, Second edition, Graduate Texts in Mathematics 13, Springer-Verlag, New York, 1992.
- G. Böhm, Integral theory for Hopf algebroids, Algebra Represent. Theory 8 (2005), 563-599.
- G. Böhm, Hopf algebroids, Handbook of Algebra 6, 173-235, Elsevier/North-Holland, Ams- terdam, 2009.
- G. Böhm, K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, Journal of Algebra 274 (2004), 708-750.
- D. Calaque, M. Van den Bergh, Hochschild cohomology and Atiyah classes, Advances in Mathematics 224 (2010), 1839-1889.
- P. Dazord, D. Sondaz, Variétés de Poisson, algébroides de Lie, Publications Dépt. Math. 88- 1/B, Univ. Lyon I, 1988, 1-68.
- V. G. Drinfeld, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986), 1987, pp. 798-820.
- P. Etingof, E. Schiffmann, Lectures on quantum groups, Second edition, Lectures in Mathe- matical Physics, International Press, Somerville, MA, 2002.
- S. Evens, J-H. Lu, A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417-436.
- G. L. Fel'dman, Global dimension of rings of differential operators, Trans. of Moscow Math- ematical Society 1 (1982), 123-147.
- F. Gavarini, The quantum duality principle, Annales de l'Institut Fourier 53 (2002), 809-834.
- P. J. Higgins, K. C. Mackenzie, Duality for base-changing morphisms of vector bundles, mod- ules, Lie algebroids and Poisson structures, Math. Proc. Camb. Phil. Soc. 114 (1993), 471- 488.
- P. J. Hilton, U. Stammbach, A course in homological algebra, Second edition, Graduate Texts in Mathematics 4, Springer-Verlag, New York, 1997.
- J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113.
- J. Huebschmann, Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras, Poisson geometry (Warsaw, 1998), 87-102, Banach Center Publ. 51, Polish Acad. Sci., Warsaw, 2000.
- L. Kadison, K. Szlachányi, Bialgebroid actions on depth two extensions and duality, Advances in Mathematics 179 (2003), 75-121.
- C. Kassel, V. Turaev, Biquantization of Lie algebras, Pacific Journal of Mathematics 195 (2000), 297-369.
- M. Khalkhali, B. Rangipour, A new cyclic module Hopf algebras, K-theory 27 (2002), 111- 131.
- Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applican- dae Mathematicae 41 (1995), 1243-1274.
- Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
- N. Kowalzig, Hopf algebroids and their cyclic theory, Ph. D. Thesis. in Mathematics, Univer- siteit Utrecht, 2009.
- N. Kowalzig, U. Krähmer, Duality and products in algebraic (co)homology theories, J. Algebra 323 (2010), no. 1, 297-318.
- N. Kowalzig, H. Posthuma, The cyclic theory of Hopf algebrois, Journal of Noncommutative Geometry 5 (2011), no. 3, 423-476.
- J.-H. Lu, Hopf algebroids and quantum groupoids, International J. Math. 7 ¯(1996), 47-70.
- K. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids, Duke Mathematical Journal 73 (1994), 415-452.
- S. Montgomery, Hopf algebra and their actions on rings, CBMS Regional Conf. Ser. in Math. 82, American mathematical Society, Providence, RI, 1993.
- I. Moerdijk, J. Mrčun, On the universal enveloping algebra of a Lie-Rinehart algebra, Proc. Amer. Math. Soc. 138 (2010), 3135-3145.
- R. Nest, B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorem, Asian J. Mathematics 5 (2001), 599-635.
- G. Rinehart, Differential forms for general commutative algebras, Trans. American Mathe- matical Society 108 (1963), 195-222.
- P. Schauenburg, Duals and doubles of quantum groupoids (? R -Hopf algebras), New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 273-299.
- M. Takeuchi, Groups of algebras over A ⊗ A, Math. Soc. Japan 29 (1977), no. 3, 459-492.
- P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.
- P. Xu, Quantum groupoids, Comm. Math. Phys. 216 (2001), 539-581.