Academia.eduAcademia.edu

Outline

Duality functors for quantum groupoids

2012

https://doi.org/10.4171/JNCG/194

Abstract

We present a formal algebraic language to deal with quantum deformations of Lie-Rinehart algebras - or Lie algebroids, in a geometrical setting. In particular, extending the ice-breaking ideas introduced by Xu in [Ping Xu, "Quantum groupoids", Comm. Math. Phys. 216 (2001), 539-581], we provide suitable notions of "quantum groupoids". For these objects, we detail somewhat in depth the formalism of linear duality; this yields several fundamental antiequivalences among (the categories of) the two basic kinds of "quantum groupoids". On the other hand, we develop a suitable version of a "quantum duality principle" for quantum groupoids, which extends the one for quantum groups - dealing with Hopf algebras - originally introduced by Drinfeld (cf. [V. G. Drinfeld, "Quantum groups", Proc. ICM (Berkeley, 1986), 1987, pp. 798-820], sec. 7) and later detailed in [F. Gavarini, "The quantum duality principle", Annales de l'Institut Fourier 53 (2002), 809-834].

References (34)

  1. R. Almeida, A. Kumpera, Structure produit dans la catégorie des algébroides de Lie, Ann. Acad. Brasil Cienc. 53 (1981), 247-250.
  2. F. W. Anderson, K. R. Fuller, Rings and categories of modules, Second edition, Graduate Texts in Mathematics 13, Springer-Verlag, New York, 1992.
  3. G. Böhm, Integral theory for Hopf algebroids, Algebra Represent. Theory 8 (2005), 563-599.
  4. G. Böhm, Hopf algebroids, Handbook of Algebra 6, 173-235, Elsevier/North-Holland, Ams- terdam, 2009.
  5. G. Böhm, K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, Journal of Algebra 274 (2004), 708-750.
  6. D. Calaque, M. Van den Bergh, Hochschild cohomology and Atiyah classes, Advances in Mathematics 224 (2010), 1839-1889.
  7. P. Dazord, D. Sondaz, Variétés de Poisson, algébroides de Lie, Publications Dépt. Math. 88- 1/B, Univ. Lyon I, 1988, 1-68.
  8. V. G. Drinfeld, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986), 1987, pp. 798-820.
  9. P. Etingof, E. Schiffmann, Lectures on quantum groups, Second edition, Lectures in Mathe- matical Physics, International Press, Somerville, MA, 2002.
  10. S. Evens, J-H. Lu, A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417-436.
  11. G. L. Fel'dman, Global dimension of rings of differential operators, Trans. of Moscow Math- ematical Society 1 (1982), 123-147.
  12. F. Gavarini, The quantum duality principle, Annales de l'Institut Fourier 53 (2002), 809-834.
  13. P. J. Higgins, K. C. Mackenzie, Duality for base-changing morphisms of vector bundles, mod- ules, Lie algebroids and Poisson structures, Math. Proc. Camb. Phil. Soc. 114 (1993), 471- 488.
  14. P. J. Hilton, U. Stammbach, A course in homological algebra, Second edition, Graduate Texts in Mathematics 4, Springer-Verlag, New York, 1997.
  15. J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113.
  16. J. Huebschmann, Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras, Poisson geometry (Warsaw, 1998), 87-102, Banach Center Publ. 51, Polish Acad. Sci., Warsaw, 2000.
  17. L. Kadison, K. Szlachányi, Bialgebroid actions on depth two extensions and duality, Advances in Mathematics 179 (2003), 75-121.
  18. C. Kassel, V. Turaev, Biquantization of Lie algebras, Pacific Journal of Mathematics 195 (2000), 297-369.
  19. M. Khalkhali, B. Rangipour, A new cyclic module Hopf algebras, K-theory 27 (2002), 111- 131.
  20. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applican- dae Mathematicae 41 (1995), 1243-1274.
  21. Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
  22. N. Kowalzig, Hopf algebroids and their cyclic theory, Ph. D. Thesis. in Mathematics, Univer- siteit Utrecht, 2009.
  23. N. Kowalzig, U. Krähmer, Duality and products in algebraic (co)homology theories, J. Algebra 323 (2010), no. 1, 297-318.
  24. N. Kowalzig, H. Posthuma, The cyclic theory of Hopf algebrois, Journal of Noncommutative Geometry 5 (2011), no. 3, 423-476.
  25. J.-H. Lu, Hopf algebroids and quantum groupoids, International J. Math. 7 ¯(1996), 47-70.
  26. K. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids, Duke Mathematical Journal 73 (1994), 415-452.
  27. S. Montgomery, Hopf algebra and their actions on rings, CBMS Regional Conf. Ser. in Math. 82, American mathematical Society, Providence, RI, 1993.
  28. I. Moerdijk, J. Mrčun, On the universal enveloping algebra of a Lie-Rinehart algebra, Proc. Amer. Math. Soc. 138 (2010), 3135-3145.
  29. R. Nest, B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorem, Asian J. Mathematics 5 (2001), 599-635.
  30. G. Rinehart, Differential forms for general commutative algebras, Trans. American Mathe- matical Society 108 (1963), 195-222.
  31. P. Schauenburg, Duals and doubles of quantum groupoids (? R -Hopf algebras), New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 273-299.
  32. M. Takeuchi, Groups of algebras over A ⊗ A, Math. Soc. Japan 29 (1977), no. 3, 459-492.
  33. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.
  34. P. Xu, Quantum groupoids, Comm. Math. Phys. 216 (2001), 539-581.