Acoustical technique for Lagrangian velocity measurement
2005, Review of Scientific Instruments
https://doi.org/10.1063/1.1844452Abstract
Ultrasonic transducers array can be used to track solid particles advected by a turbulent flow. The simultaneous use of four linear antennas of transducers gives the 3D position of the particles. The extraction of the Doppler frequency shift gives a precise estimation of velocity components. We describe the principle of the technique, the signal conditioning and the acquisition schemes. We
References (22)
- H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis ͑Ox- ford University Press, Oxford, 1995͒; B. M. Watrasiewicz, Laser Doppler Measurements ͑Butterworths, London, 1976͒.
- M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Experimental Fluid Mechanics) ͑Springer, Berlin, 1998͒; Particle Image Velocimetry-Progress Towards Industrial Applica- tions, edited by M. Stanislas, J. Kompenhans, and J. Westerweel ͑Kluwer Academic, Dordrecht, 2000͒, Vol. 56.
- B. Tao, J. Katz, and C. Meneveau, J. Fluid Mech. 457, 35 ͑2002͒.
- R. A. Shaw and S. P. Oncley, Atmos. Res. 59-60, 77 ͑2001͒; G. Falkov- ich, A. Fouxon, and M. G. Stepanov, Nature ͑London͒ 419, 151 ͑2002͒.
- UTAM Symposium on Turbulent Mixing and Combustion, edited by A. Pollard and S. Candel, in Proceedings of the IUTAM Symposium, King- ston, Ontario, Canada, June 3-6, 2001, Fluid Mechanics and its Applica- tions ͑Kluwer Academic, Dordrecht, 2002͒, Vol. 70.
- A. Pumir, B. Shraiman, and M. Chertkov, Phys. Rev. Lett. 85, 5324 ͑2000͒.
- M. Rivera, P. Vorobieff, and R. E. Ecke, Phys. Rev. Lett. 81, 1417 ͑1998͒;
- M.-C. Jullien, J. Paret, and P. Tabeling, ibid. 82, 2872 ͑1999͒; H. Kellay and W. I. Goldburg, Rep. Prog. Phys. 65, 845 ͑2002͒.
- S. Ott and J. Mann, J. Fluid Mech. 422, 207 ͑2000͒.
- M. Virant and T. Dracos, Meas. Sci. Technol. 8, 1539 ͑1997͒.
- G. A. Voth, K. Satyaanarayan, and E. Bodenschatz, Phys. Fluids 10, 2268 ͑1998͒.
- N. Mordant, E. Leveque, and J.-F. Pinton, New J. Phys. 6, 34 ͑2004͒.
- Y. Takeda, Int. J. Heat Fluid Flow 7, 313 ͑1986͒.
- N. Mordant and J.-F. Pinton, Eur. Phys. J. B 18, 343 ͑2000͒.
- H. Tennekes and J.-L. Lumley, A First Course in Turbulence ͑MIT Press, New York, 1972͒.
- N. Mordant, O. Michel, and J.-F. Pinton, J. Acoust. Soc. Am. 112, 108 ͑2002͒.
- B. Dernoncourt, J.-F. Pinton, and S. Fauve Physica D 117, 181 ͑1998͒.
- J.-F. Pinton and R. Labbé, J. Phys. II ͑France͒ 4, 1461 ͑1994͒; N. Mor- dant, J.-F. Pinton, and F. Chillà, ibid. 7, 1 ͑1997͒; A. La Porta, Greg A. Voth, F. Moisy, and E. Bodenschatz, Phys. Fluids 12, 1485 ͑2000͒.
- N. Mordant, O. Michel, P. Metz, and J.-F. Pinton, Phys. Rev. Lett. 87, 214501 ͑2001͒.
- L. Chevillard, S. G. Roux, N. Mordant, E. Levêque, J.-F. Pinton, and A. Arnéodo, Phys. Rev. Lett. 91, 214502 ͑2003͒.
- N. Mordant, J. Delour, A. Arnéodo, O. Michel, and J.-F. Pinton, Phys. Rev. Lett. 89, 254502 ͑2002͒.
- N. Mordant, Ph.D. thesis, École Normale Suprieure de Lyon, Lyon, No- vember 2001 ͑unpublished͒.