Academia.eduAcademia.edu

Outline

Acoustical technique for Lagrangian velocity measurement

2005, Review of Scientific Instruments

https://doi.org/10.1063/1.1844452

Abstract

Ultrasonic transducers array can be used to track solid particles advected by a turbulent flow. The simultaneous use of four linear antennas of transducers gives the 3D position of the particles. The extraction of the Doppler frequency shift gives a precise estimation of velocity components. We describe the principle of the technique, the signal conditioning and the acquisition schemes. We

References (22)

  1. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis ͑Ox- ford University Press, Oxford, 1995͒; B. M. Watrasiewicz, Laser Doppler Measurements ͑Butterworths, London, 1976͒.
  2. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Experimental Fluid Mechanics) ͑Springer, Berlin, 1998͒; Particle Image Velocimetry-Progress Towards Industrial Applica- tions, edited by M. Stanislas, J. Kompenhans, and J. Westerweel ͑Kluwer Academic, Dordrecht, 2000͒, Vol. 56.
  3. B. Tao, J. Katz, and C. Meneveau, J. Fluid Mech. 457, 35 ͑2002͒.
  4. R. A. Shaw and S. P. Oncley, Atmos. Res. 59-60, 77 ͑2001͒; G. Falkov- ich, A. Fouxon, and M. G. Stepanov, Nature ͑London͒ 419, 151 ͑2002͒.
  5. UTAM Symposium on Turbulent Mixing and Combustion, edited by A. Pollard and S. Candel, in Proceedings of the IUTAM Symposium, King- ston, Ontario, Canada, June 3-6, 2001, Fluid Mechanics and its Applica- tions ͑Kluwer Academic, Dordrecht, 2002͒, Vol. 70.
  6. A. Pumir, B. Shraiman, and M. Chertkov, Phys. Rev. Lett. 85, 5324 ͑2000͒.
  7. M. Rivera, P. Vorobieff, and R. E. Ecke, Phys. Rev. Lett. 81, 1417 ͑1998͒;
  8. M.-C. Jullien, J. Paret, and P. Tabeling, ibid. 82, 2872 ͑1999͒; H. Kellay and W. I. Goldburg, Rep. Prog. Phys. 65, 845 ͑2002͒.
  9. S. Ott and J. Mann, J. Fluid Mech. 422, 207 ͑2000͒.
  10. M. Virant and T. Dracos, Meas. Sci. Technol. 8, 1539 ͑1997͒.
  11. G. A. Voth, K. Satyaanarayan, and E. Bodenschatz, Phys. Fluids 10, 2268 ͑1998͒.
  12. N. Mordant, E. Leveque, and J.-F. Pinton, New J. Phys. 6, 34 ͑2004͒.
  13. Y. Takeda, Int. J. Heat Fluid Flow 7, 313 ͑1986͒.
  14. N. Mordant and J.-F. Pinton, Eur. Phys. J. B 18, 343 ͑2000͒.
  15. H. Tennekes and J.-L. Lumley, A First Course in Turbulence ͑MIT Press, New York, 1972͒.
  16. N. Mordant, O. Michel, and J.-F. Pinton, J. Acoust. Soc. Am. 112, 108 ͑2002͒.
  17. B. Dernoncourt, J.-F. Pinton, and S. Fauve Physica D 117, 181 ͑1998͒.
  18. J.-F. Pinton and R. Labbé, J. Phys. II ͑France͒ 4, 1461 ͑1994͒; N. Mor- dant, J.-F. Pinton, and F. Chillà, ibid. 7, 1 ͑1997͒; A. La Porta, Greg A. Voth, F. Moisy, and E. Bodenschatz, Phys. Fluids 12, 1485 ͑2000͒.
  19. N. Mordant, O. Michel, P. Metz, and J.-F. Pinton, Phys. Rev. Lett. 87, 214501 ͑2001͒.
  20. L. Chevillard, S. G. Roux, N. Mordant, E. Levêque, J.-F. Pinton, and A. Arnéodo, Phys. Rev. Lett. 91, 214502 ͑2003͒.
  21. N. Mordant, J. Delour, A. Arnéodo, O. Michel, and J.-F. Pinton, Phys. Rev. Lett. 89, 254502 ͑2002͒.
  22. N. Mordant, Ph.D. thesis, École Normale Suprieure de Lyon, Lyon, No- vember 2001 ͑unpublished͒.