Academia.eduAcademia.edu

Outline

Velocity Profile Measurement by Ultrasonic Doppler Method

Abstract

The ultrasonic velocity profile measuring method has been developed at PSI for application in fluid mechanics and fluid flow measurement. It uses pulsed ultrasonic echography together with the detection of the instantaneous Doppler shift frequency. This method has the following advantages over the conventional techniques: (1) an efficient flow mapping process, (2) applicability to opaque liquids, and (3) a record of the spatiotemporal velocity field. After a brief introduction of its principle, the characteristics and specifications of the present system are given. Then examples in fluid engineering for oscillating pipe flow, T-branching flow of mercury, and recirculating flow in a square cavity are described that confirm the method's advantages. Several other works under way by other investigators are introduced. A potential for in-depth study of fluid dynamics is demonstrated by several examples from an investigation of modulated wavy flows in a rotating Couette system. The position-averaged power spectrum and the time-averaged energy spectral density were used to study the dynamic characteristics of the flow, and subsequently the velocity field was decomposed into its intrinsic wave structure based on two-dimensional Fourier analysis.

References (33)

  1. Atkinson, P., and Woodcock, J. P., Doppler Ultrasound and Its Use in Clinical Measurement, Academic, New York 1982, refer- ences therein.
  2. Takeda, Y., Velocity Profile Measurement by Ultrasound Doppler Shift Method, Int. J. Heat Fluid Flow 7(4) 313-318, 1986.
  3. Takeda, Y., Development of Ultrasound Velocity Profile Moni- tor, Nuc. Eng. Design 126, 277-284, 1990.
  4. Operation Manual, UVP-X-1-PS, Met-Flow SA, Lausanne, Switzerland.
  5. Takeda, Y. and Haefeli, M., Velocity Profile Measurement by Ultrasonic Doppler Shift Method. Evaluation of Shape Repro- ducibility in Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, J. F. Keffer, R. K. Shah, and E. N. Ganic, Eds., p 369-374, Elsevier, New York, 1991.
  6. Sakakibara, J., Hishida, K., and Maeda, M., Measurements of Thermally Stratified Pipe Flow Using Image-Processing Tech- niques, Exp. Fluids 16, 82-96, 1993.
  7. Teufel, M., Trimis, D., Lohmiiller, A., Takeda, Y., and Durst, F., Determination of Velocity Profile in Oscillating Pipe-Flow by Using Laser Doppler Velocimetry and Ultrasonic Measuring Devices, Flow Meas. Instrum. 3, 95-101, 1992.
  8. Takeda, Y., Measurement of Velocity Profile of Mercury Flow by Ultrasound Doppler Shift Method, Nuc. TechnoL 79, 120-124, 1987.
  9. Takeda, Y., Kobayashi, K., Takada, K. and Fischer, W. E., Experimental Measurements of 2D Velocity Vector Field Using Ultrasonic Velocity Profile Monitor (UVP), ASME FED-Vol. 128, p. 47-57, 1991.
  10. Takeda, Y., Vortex Propagation in a Circular Free Jet, in prepa- ration.
  11. Henneke, K. H., Melling, A., Wang, Z., Durst, F., Kunkel B. et al., Assessment of Spatial and Temporal Velocity Profiles Distal of Normally Functioning Bj6rk-Shiley Prosthesis by Doppler Method, Int. J. Cardiol. 37, 381-287, 1992.
  12. H6fken, M., Bischof, F., W~ichter, P., Durst, F., The Investigation of Stirring and Mixing Processes with an Ultrasonic Velocity Profile Monitor, Eighth-Eur. Conf. on Mixing, Sept. 1994, 21-23, Cambridge, UK.
  13. Cantz, S., Anwendung der Ultraschalldoppleranemometrie zur Ermittlung von Rohrstr6mungsgeschwindigkeitsprofilen in Abh~ingigkeit von rheologischen Stoffgr/Sssen, Semesterarbeit WS 93/94, Institut ftir Lebensmittelwissenschaften, ETH-Zurich.
  14. Steger, R., Vorwerk, J., Brunn, P. O., Geschwindigkeitsmessun- gen mit einem On-line-ultraschallsensor zur kontinuierlichen Prozesskontrolle komplexer Fluide (z.B. Lebensmittel), Chem. Ing. Tech. 65, 1087, 1993.
  15. Kobayashi, J., Ieda, Y., Kamide, M., and Satoh, K., Proc. Annual Meeting of the Japanese Soc. of Atomic Energy, Fall 1993.
  16. Yoshihara, S., Ohinishi, M., and Azuma, H., Fluid Behavior in a Rectangular Cell Under a Parabolic Flight Using an Airplane, J. Jpn. Soc. Microgravity 9, 266-274, 1992 (in Japanese).
  17. Tokuhiro, A., and Takeda, Y., Measurement of Flow Phenomena Using the Ultrasonic Velocity Profile Method in a Simulated Czochralski Crystal Puller, J. Crystal Growth 130, 421-432, 1993.
  18. Takeda, Y., Sakakibara, J., and Ohmura, K., Printing a Movie on a Paper and Fourier Analysis of Velocity Field, Int. Seminar on Imaging in Transport Processes, 25-29 May, 1992, Athens, Greece.
  19. DiPrima, R. C., and Swinney, H. L., Instability and Transition in Flow Between Concentric Rotating Cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney and J. P. Gollub, Eds. Springer-Verlag, Berlin, 1985.
  20. Takeda, Y., Kobashi, K., and Fischer, W. E., Observation of the Transient Behaviro of Taylor Vortex Flow Between Rotating Concentric Cylinders After Sudden Start, Exp. Fluids, 9, 317-319, 1990.
  21. Snyder, H. A., Wave-Number Selection at Finite Amplitude in Rotating Couette Flow, J. Fluid Mech. 35, 273-298, 1969.
  22. Takeda, Y., Fischer, W. E., Kobashi, K., and Takada, Y., Spatial Characteristics of Dynamic Properties of Modulated Wavy Vor- tex Flow in a Rotating Couette System, Exp. Fluids 13, 199-277, 1992.
  23. Takeda, Y., Fischer, W. E., Sakakibara, J., and Ohmura, K., Experimental Observation of the Quasiperiodic Modes in a Ro- tating Couette System, Phys. Rev. E 47, 4130-4134, 1993.
  24. Marcus, P. S., Simulation of Taylor-Couette Flow. Part 2. Numer- ical Results for Wavy-Vortex Flow with One Traveling Wave, J. Fluid Mech. 146, 65-113, 1984.
  25. Coughlin, K. T., and Marcus, P. S., Modulated Waves in Taylor- Couette Flow, J. Fluid Mech. 234, 1-33, 1992.
  26. Coughlin, K. T., Marcus, P. S., Tagg, R. P., and Swinney, H. L., Distinct Quasiperiodic Modes with Like Symmetry in a Rotating Fluid, Phys. Rev. Lett. 66, 1161-1164, 1991.
  27. Takeda, Y., Fischer, W. E., and Sakakibara, J., Measurement of Energy Spectral Density of a Flow in a Rotating Couette System, Phys. Rec. Lett. 70, 3569-3571, 1993.
  28. Lumley, J. L., The Structure of Inhomogeneous Turbulent Flow in Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarski, Eds., 166-178, Nauka, Moscow, 1967.
  29. Lumley, J. L., Coherent Structures in Turbulence in Transition and Turbulence, R. E. Meyer, Ed., 215-242, Academic, New York, 1981.
  30. Berkooz, G., Holmes, P., and Lumley, J. L., The Proper Orthogo- nal Decomposition in the Analysis of Turbulent Flows, Annu. Rev. Fluid Mech. 25, 539-575, 1993.
  31. Drazin, D. G., and King, G. P., Introduction to the Proceeding of the Workshop "The Interpretation of Time Series from Nonlin- ear Mechanical System," Physica 58D, Vii-Xi, 1992.
  32. Takeda, Y., Fischer, W. E., and Sakakibara, J., Decomposition of the Modulated Waves in a Rotating Couette System, Science 263, 502-505, 1994.
  33. Craik, A. D. D. Wave Interactions and Fluid Flows, Cambridge Univ. Press, New York, 1985.