Academia.eduAcademia.edu

Outline

IMPS: An interactive mathematical proof system

1993, Journal of Automated Reasoning

https://doi.org/10.1007/BF00881906

Abstract

imps is an Interactive Mathematical Proof System intended as a general purpose tool for formulating and applying mathematics in a familiar fashion. The logic of imps is based on a version of simple type theory with partial functions and subtypes. Mathematical specification and inference are performed relative to axiomatic theories, which can be related to one another via inclusion and theory interpretation. imps provides relatively large primitive inference steps to facilitate human control of the deductive process and human comprehension of the resulting proofs. An initial theory library containing almost a thousand repeatable proofs covers significant portions of logic, algebra and analysis, and provides some support for modeling applications in computer science.

References (50)

  1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Academic Press, 1986.
  2. P. B. Andrews, S. Issar, D. Nesmith, and F. Pfenning. The tps theorem proving system (system abstract). In M. E. Stickel, editor, 10th In- ternational Conference on Automated Deduction, volume 449 of Lecture Notes in Computer Science, pages 641-642. Springer-Verlag, 1990.
  3. W. W. Bledsoe. Some automatic proofs in analysis. In Automated The- orem Proving: After 25 Years. American Mathematical Society, 1984.
  4. G. S. Boolos. On second-order logic. Journal of Philosophy, 72:509-527, 1975.
  5. R. S. Boyer and J S. Moore. Integrating decision procedures into heuris- tic theorem provers: A case study of linear arithmetic. Technical Report icsca-cmp-44, Institute for Computing Science, University of Texas at Austin, January 1985.
  6. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Computing Surveys, 17:471-522, 1985.
  7. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
  8. E. Clarke and X. Zhao. Analytica-a theorem prover in mathemat- ica. In D. Kapur, editor, Automated Deduction-CADE-11, volume 607 of Lecture Notes in Computer Science, pages 761-765. Springer-Verlag, 1992.
  9. R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat- ics with the Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
  10. T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95-120, 1988.
  11. D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink. eves: An overview. Technical Report CP-91-5402-43, ORA Corpora- tion, 1991.
  12. D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink. Eves system description. In D. Kapur, editor, Automated Deduction- CADE-11, volume 607 of Lecture Notes in Computer Science, pages 771-775. Springer-Verlag, 1992.
  13. J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.
  14. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
  15. W. M. Farmer. Abstract data types in many-sorted second-order logic. Technical Report M87-64, The mitre Corporation, 1987.
  16. W. M. Farmer. A partial functions version of Church's simple theory of types. Journal of Symbolic Logic, 55:1269-91, 1990.
  17. W. M. Farmer. A simple type theory with partial functions and sub- types. Annals of Pure and Applied Logic, 64:211-240, 1993.
  18. W. M. Farmer. A technique for safely extending axiomatic theories. Technical report, The mitre Corporation, 1993.
  19. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, editor, Automated Deduction-CADE-11, volume 607 of Lec- ture Notes in Computer Science, pages 567-581. Springer-Verlag, 1992.
  20. W. M. Farmer and F. J. Thayer. Two computer-supported proofs in metric space topology. Notices of the American Mathematical Society, 38:1133-1138, 1991.
  21. S. Feferman. Systems of predicative analysis. Journal of Symbolic Logic, 29:1-30, 1964.
  22. G. Gentzen. Investigations into logical deduction (1935). In The Col- lected Works of Gerhard Gentzen. North Holland, 1969.
  23. J. A. Goguen. Principles of parameterized programming. Technical report, sri International, 1987.
  24. J. A. Goguen and R. M. Burstall. Introducing institutions. In Logic of Programs, volume 164 of Lecture Notes in Computer Science, pages 221-256. Springer-Verlag, 1984.
  25. M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh lcf: A Mech- anised Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.
  26. M. J. C. Gordon. hol: A proof generating system for higher-order logic. In G. Birtwistle and P. A. Surahmanyam, editors, VLSI Specifica- tion, Verification, and Synthesis, pages 73-128. Kluwer, Dordrecht, The Netherlands, 1987.
  27. J. Grundy. Window inference in the hol system. In Proceedings of the 1991 International Workshop on the hol Theorem Proving System and its Applications, pages 177-89. IEEE Computer Society Press, 1991.
  28. J. D. Guttman. A proposed interface logic for verification environments. Technical Report M91-19, The mitre Corporation, 1991.
  29. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91, 1950.
  30. L. M. Hines. The central variable strategy of str + . ve. In D. Kapur, editor, Automated Deduction-CADE-11, volume 607 of Lecture Notes in Computer Science, pages 35-49. Springer-Verlag, 1992.
  31. W. A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal- ism, pages 479-490. Academic Press, 1980.
  32. M. Kohlhase. Unification in order-sorted type theory. In A. Voronkov, editor, Logic Programming and Automated Reasoning, volume 624 of Lecture Notes in Computer Science, pages 421-432. Springer-Verlag, 1992.
  33. D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. or- bit: An optimizing compiler for scheme. In Proceedings of the sigplan '86 Symposium on Compiler Construction, volume 21, pages 219-233, 1986. Proceedings of the '86 Symposium on Compiler Construction.
  34. P. Martin-Löf. Constructive mathematics and computer programming. In L. J. Cohen, J. Los, H. Pfeiffer, and K. P. Podewski, editors, Logic, Methodology, and Philosophy of Science VI, pages 153-175, Amsterdam, 1982. North-Holland.
  35. J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.
  36. L. G. Monk. Inference rules using local contexts. Journal of Automated Reasoning, 4:445-462, 1988.
  37. Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, 1974.
  38. Y. N. Moschovakis. Abstract recursion as a foundation for the theory of algorithms. In Computation and Proof Theory, Lecture Notes in Math- ematics 1104, pages 289-364. Springer-Verlag, 1984.
  39. S. Owre, J. M. Rushby, and N. Shankar. pvs: A prototype verification system. In D. Kapur, editor, Automated Deduction-CADE-11, volume 607 of Lecture Notes in Computer Science, pages 748-752. Springer- Verlag, 1992.
  40. B. Pase and S. Kromodimoeljo. m-Never system summary. In E. Lusk and R. Overbeek, editors, 9th International Conference on Automated Deduction, volume 310 of Lecture Notes in Computer Science, pages 738-39. Springer-Verlag, 1988.
  41. J. A. Rees, N. I. Adams, and J. R. Meehan. The T Manual. Computer Science Department, Yale University, fifth edition, 1988.
  42. J. Rushby, F. von Henke, and S. Owre. An introduction to formal specification and verification using ehdm. Technical Report sri-csl-91- 02, sri International, 1991.
  43. B. Russell. On denoting. Mind (New Series), 14:479-493, 1905.
  44. B. Russell. Mathematical logic as based on the theory of types. American Journal of Mathematics, 30:222-262, 1908.
  45. S. Shapiro. Second-order languages and mathematical practice. Journal of Symbolic Logic, 50:714-742, 1985.
  46. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
  47. R. M. Stallman. gnu Emacs Manual (Version 18). Free Software Foun- dation, sixth edition edition, 1987.
  48. F. J. Thayer. Obligated term replacements. Technical Report MTR- 10301, The mitre Corporation, 1987.
  49. H. Weyl. Das Kontinuum. Veit, Leipzig, 1918.
  50. A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1910. Paperback version to section *56 published 1964.