Formalising foundations of mathematics
2011, Mathematical Structures in Computer Science
https://doi.org/10.1017/S0960129511000144Abstract
Over the recent decades there has been a trend towards formalized mathematics, and a number of sophisticated systems have been developed to support the formalization process and mechanically verify its result. However, each tool is based on a specic foundation of mathematics, and formalizations in dierent systems are not necessarily compatible. Therefore, the integration of these foundations has received growing interest. We contribute to this goal by using LF as a foundational framework in which the mathematical foundations themselves can be formalized and therefore also the relations between them. We represent three of the most important foundations Isabelle/HOL, Mizar, and ZFC set theory as well as relations between them. The relations are formalized in such a way that the framework permits the extraction of translation functions, which are guaranteed to be well-dened and sound. Our work provides the starting point of a systematic study of formalized foundations in order to compare, relate, and integrate them.
References (55)
- Aczel, P. (1998), On Relating Type Theories and Set Theories, in T. Altenkirch, W. Naraschewski & B. Reus, eds, `Types for Proofs and Programs', pp. 118.
- Bancerek, G. (2003), On the structure of Mizar types, Vol. 85 of Electronic Notes in Theoretical Computer Science, pp. 6985.
- Bourbaki, N. (1964), Univers, in `Séminaire de Géométrie Algébrique du Bois Marie - Théorie des topos et cohomologie étale des schémas', Springer, pp. 185217.
- Brown, C. (2006), Combining Type Theory and Untyped Set Theory, in U. Furbach & N. Shankar, eds, `International Joint Conference on Automated Reasoning', Springer, pp. 205219.
- Church, A. (1940), `A Formulation of the Simple Theory of Types', Journal of Symbolic Logic 5(1), 5668.
- Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J. & Smith, S. (1986), Implementing Mathematics with the Nuprl Development System, Prentice-Hall.
- Coquand, T. & Huet, G. (1988), `The Calculus of Constructions', Information and Com- putation 76(2/3), 95120.
- de Bruijn, N. (1970), The Mathematical Language AUTOMATH, in M. Laudet, ed., `Proceedings of the Symposium on Automated Demonstration', Vol. 25 of Lecture Notes in Mathematics, Springer, pp. 2961.
- de Nivelle, H. (2010), Classical Logic with Partial Functions, in J. Giesl & R. Hähnle, eds, `Automated Reasoning', Springer, pp. 203217.
- Dumbrava, S. & Rabe, F. (2010), `Structuring Theories with Partial Morphisms'. Work- shop on Abstract Development Techniques.
- Farmer, W., Guttman, J. & Thayer, F. (1993), `IMPS: An Interactive Mathematical Proof System', Journal of Automated Reasoning 11(2), 213248.
- Fraenkel, A. (1922), `The notion of 'denite' and the independence of the axiom of choice'.
- Gordon, M. (1988), HOL: A Proof Generating System for Higher-Order Logic, in G. Birtwistle & P. Subrahmanyam, eds, `VLSI Specication, Verication and Syn- thesis', Kluwer-Academic Publishers, pp. 73128.
- Gordon, M., Milner, R. & Wadsworth, C. (1979), Edinburgh LCF: A Mechanized Logic of Computation, number 78 in `LNCS', Springer Verlag.
- Gordon, M. & Pitts, A. (1993), The HOL Logic, in M. Gordon & T. Melham, eds, `Introduction to HOL, Part III', Cambridge University Press, pp. 191232.
- Hales, T. (2003), `The yspeck project'. See http://code.google.com/p/flyspeck/.
- Harper, R., Honsell, F. & Plotkin, G. (1993), `A framework for dening logics', Journal of the Association for Computing Machinery 40(1), 143184.
- Harper, R., Sannella, D. & Tarlecki, A. (1994), `Structured presentations and logic rep- resentations', Annals of Pure and Applied Logic 67, 113160.
- Harrison, J. (1996), HOL Light: A Tutorial Introduction, in `Proceedings of the First International Conference on Formal Methods in Computer-Aided Design', Springer, pp. 265269.
- Hurd, J. (2009), OpenTheory: Package Management for Higher Order Logic Theories, in G. D. Reis & L. Théry, eds, `Programming Languages for Mechanized Mathematics Systems', ACM, pp. 3137.
- Iancu, M. & Rabe, F. (2010), `Formalizing Foundations of Mathematics, LF Encodings'. see https://latin.omdoc.org/wiki/FormalizingFoundations.
- Ja±kowski, S. (1934), `On the rules of suppositions in formal logic', Studia Logica 1, 532.
- Keller, C. & Werner, B. (2010), Importing HOL Light into Coq, in M. Kaufmann & L. Paulson, eds, `Proceedings of the Interactive Theorem Proving conference'. to appear in LNCS.
- Klein, G., Nipkow, T. & (eds.), L. P. (2004), `Archive of Formal Proofs'. http://afp.sourceforge.net/.
- Kohlhase, M., Mossakowski, T. & Rabe, F. (2009), `The LATIN Project'. See https: //trac.omdoc.org/LATIN/.
- Krauss, A. & Schropp, A. (2010), A Mechanized Translation from Higher-Order Logic to Set Theory, in M. Kaufmann & L. Paulson, eds, `Proceedings of the Interactive Theorem Proving conference'. to appear in LNCS.
- Landau, E. (1930), Grundlagen der Analysis, Akademische Verlagsgesellschaft.
- Lovas, W. & Pfenning, F. (2009), Renement Types as Proof Irrelevance, in P. Curien, ed., `Typed Lambda Calculi and Applications', Vol. 5608 of Lecture Notes in Com- puter Science, Springer, pp. 157171.
- Matuszewski, R. (1990), `Formalized Mathematics'. http://mizar.uwb.edu.pl/fm/.
- McLaughlin, S. (2006), An Interpretation of Isabelle/HOL in HOL Light, in N. Shankar & U. Furbach, eds, `Proceedings of the 3rd International Joint Conference on Au- tomated Reasoning', Vol. 4130 of Lecture Notes in Computer Science, Springer. Mizar (2009), `Grammar, version 7.11.02'. http://mizar.org/language/mizar- grammar.xml.
- Naumov, P., Stehr, M. & Meseguer, J. (2001), The HOL/NuPRL proof translator -a practical approach to formal interoperability, in `14th International Conference on Theorem Proving in Higher Order Logics', Springer.
- Nipkow, T., Paulson, L. & Wenzel, M. (2002), Isabelle/HOL A Proof Assistant for Higher-Order Logic, Springer.
- Norell, U. (2005), `The Agda WiKi'. http://wiki.portal.chalmers.se/agda.
- Obua, S. & Skalberg, S. (2006), Importing HOL into Isabelle/HOL, in N. Shankar & U. Furbach, eds, `Proceedings of the 3rd International Joint Conference on Auto- mated Reasoning', Vol. 4130 of Lecture Notes in Computer Science, Springer.
- Owre, S., Rushby, J. & Shankar, N. (1992), PVS: A Prototype Verication System, in D. Kapur, ed., `11th International Conference on Automated Deduction (CADE)', Springer, pp. 748752.
- Paulson, L. (1994), Isabelle: A Generic Theorem Prover, Vol. 828 of Lecture Notes in Computer Science, Springer.
- Paulson, L. & Coen, M. (1993), `Zermelo-Fraenkel Set Theory'. Isabelle distribution, ZF/ZF.thy.
- Pfenning, F. & Schürmann, C. (1999), `System description: Twelf -a meta-logical frame- work for deductive systems', Lecture Notes in Computer Science 1632, 202206.
- Pfenning, F., Schürmann, C., Kohlhase, M., Shankar, N. & Owre., S. (2003), `The Logo- sphere Project'. http://www.logosphere.org/.
- Poswolsky, A. & Schürmann, C. (2008), System Description: Delphin -A Functional Pro- gramming Language for Deductive Systems, in A. Abel & C. Urban, eds, `Interna- tional Workshop on Logical Frameworks and Metalanguages: Theory and Practice', ENTCS, pp. 135141.
- Rabe, F. (2010), Representing Isabelle in LF, in K. Crary & M. Miculan, eds, `Logical Frameworks and Meta-languages: Theory and Practice', Vol. 34 of EPTCS.
- Rabe, F. & Schürmann, C. (2009), A Practical Module System for LF, in J. Cheney & A. Felty, eds, `Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP)', ACM Press, pp. 4048.
- Schürmann, C. & Stehr, M. (2004), An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf, in `11th International Conference on Logic for Programming Articial Intelligence and Reasoning'.
- T. Hales and G. Gonthier and J. Harrison and F. Wiedijk (2008), `A Special Issue on Formal Proof'. Notices of the AMS 55(11).
- Tarski, A. (1938), `Über Unerreichbare Kardinalzahlen', Fundamenta Mathematicae 30, 176183.
- Trybulec, A. (1989), `Tarski Grothendieck Set Theory', Journal of Formalized Mathe- matics Axiomatics.
- Trybulec, A. & Blair, H. (1985), Computer Assisted Reasoning with MIZAR, in A. Joshi, ed., `Proceedings of the 9th International Joint Conference on Articial Intelligence', pp. 2628.
- Urban, J. (2003), Translating Mizar for First Order Theorem Provers, in A. As- perti, B. Buchberger & J. Davenport, eds, `Mathematical Knowledge Management', Springer, pp. 203215.
- van Benthem Jutting, L. (1977), Checking Landau's Grundlagen in the AUTOMATH system, PhD thesis, Eindhoven University of Technology.
- Wenzel, M. (2009), `The Isabelle/Isar Reference Manual'. http://isabelle.in.tum. de/documentation.html, Dec 3, 2009.
- Whitehead, A. & Russell, B. (1913), Principia Mathematica, Cambridge University Press.
- Wiedijk, F. (2006), `Is ZF a hack?: Comparing the complexity of some (formalist in- terpretations of ) foundational systems for mathematics', Journal of Applied Logic 4(4), 622645.
- Wiedijk, F. (2007), Mizar's Soft Type System, in K. Schneider & J. Brandt, eds, `The- orem Proving in Higher Order Logics', Vol. 4732 of Lecture Notes in Computer Science, Springer, pp. 383399.
- Wiener, N. (1967), A Simplication of the Logic of Relations, in J. van Heijenoort, ed., `From Frege to Gödel', Harvard Univ. Press, pp. 224227.
- Zermelo, E. (1908), `Untersuchungen über die Grundlagen der Mengenlehre I', Mathe- matische Annalen 65, 261281. English title: Investigations in the foundations of set theory I.