Academia.eduAcademia.edu

Outline

Perfect Graphs, Partitionable Graphs and Cutsets

2002, Combinatorica

https://doi.org/10.1007/S004930200001

Abstract

We prove a theorem about cutsets in partitionable graphs that generalizes earlier results on amalgams, 2-amalgams and homogeneous pairs.

References (18)

  1. C. Berge, F arbung von Graphen deren s amtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung),Wissenschaftliche Zeitschrift, Martin Luther Universit at Halle- Wittenberg, Mathematisch-Naturwissenschaftliche Reihe (1961) 114-115.
  2. C. Berge, Graphs and Hypergraphs, North Holland (1973).
  3. W.G. Bridges, H.J. Ryser, Combinatorial designs and related systems, J. Algebra 1 3 (1969) 432-446.
  4. R.G. Bland, H.C. Huang and L.E. Trotter, Jr., Graphical properties related to minimal imperfection, Discrete Math. 27 (1979) 11-22.
  5. M. Burlet and J. Fonlupt, Polynomial Algorithm to recognize a Meyniel graph, Annals of Discrete Mathematics 21 (1984) 225-252.
  6. V. Chv atal, R. L. Graham, A.F. Perold and S.H. Whitesides, Combinatorial designs related to the strong perfect graph conjecture, Discrete Math. 26 (1979) 83-92.
  7. V. Chv atal, Star-cutsets and perfect graphs, J. Combin. Theory Ser B. 39 (1985) 189- 199.
  8. V. Chv atal, N. Sbihi, Bull-free Berge graphs are perfect, Graphs and Combinatorics 3 (1987) 127-139.
  9. M. Conforti, G. Cornu ejols, Graphs without odd holes, parachutes or proper wheels: A generalization of Meyniel graphs and of line graphs of bipartite graphs, manuscript (1999).
  10. G. Cornu ejols and W.H. Cunningham, Compositions for perfect graphs, Discrete Math- ematics 55 (1985) 245-254.
  11. W.H. Cunningham and J. Edmonds, A combinatorial decomposition theory, Canadian Journal of Mathematics 22 (1980) 734-765.
  12. G.S. Gasparyan, Minimal imperfect graphs: A simple approach, Combinatorica 16 (1996) 209-212.
  13. L. Lov asz, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972) 95-98.
  14. L. Lov asz, Perfect graphs, in More S e l e cted T o p i c s o n G r aph Theory, L.M. Beineke and R.L. Wilson eds., Academic Press (1983) 55-87.
  15. F. Ma ray, A n titwins in partitionable graphs, Discrete Mathematics 112 (1993) 275-278.
  16. S. Olariu, No antitwins in minimal imperfect graphs, J. Combin. Theory Ser. B 45 (1988) 255-257.
  17. M. Padberg, Perfect zero-one matrices, Math. Programming 6 (1974) 180-196.
  18. A. Seb} o, The connectivity of minimal imperfect graphs, Journal of Graph Theory 23 (1996) 77-85.