Expressibility in Σ11
2008
Abstract
Inspired by Fagin’s result that NP = Σ11, we have developed a partial framework to investigate expressibility inside Σ11 so as to have a finer look into NP. The framework uses interesting combinatorics derived from second-order Ehrenfeucht-Fraisse games and the notion of game types. Some of the results that have been proven within this framework are: (1) for any k, divisibility by k is not expressible by a Σ11 sentence where (1.i) each second-order variable has arity at most 2, (1.ii) the first-order part has at most 2 first-order variables, and (1.iii) the first-order part has quantifier depth at most 3, (2) adding one more first-order variable makes the same problem expressible, and (3) inside this last logic the parameter k creates a proper hierarchy with varying the number of second-order variables. Key Words: Ehrenfeucht-Fraisse games, divisibility, expressibility, first-order, second-order Category: F.4,F.1.3
References (5)
- Ajtai et al. 1990] Ajtai M., Fagin R.: Reachability is Harder for Directed than for Undirected Finite Graphs. The Journal of Symbolic Logic, 55(1), 1990. [Diestel 2006] Diestel R.: Graph Theory. Springer, 2006. [Ehrenfeucht 1961] Ehrenfeucht A.: An Application of Games to the Completeness Problem for Formalized Theories. Fundamenta Mathematicae, 49:129-141, 1961. [Fagin 1974] Fagin .: Generalized First-Order Spectra and Polynomial-Time Recogniz- able Sets. In R. Karp, editor, Complexity of Computation, volume 7, pages 43-73. SIAM-AMS, 1974.
- Fagin 1975] Fagin R.: Monadic Generalized Spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:89-96, 1975. [Fiorini et al. 1977] Fiorini S., Wilson R. J.: Edge-Colourings of Graphs. Pitman, 1977. [Fraïssé 1954] Fraïssé R.: Sur quelques classifications des systèmes de relations. Uni- versité d'Alger, Publications Scientifiques, Série A, 1:35-182, 1954. [Immerman 1998] Immerman N.: Descriptive Complexity. Springer, 1998. [Koucký et al. 2006] Koucký M., Lautemann C., Poloczek S., Thérien D.: Circuit Lower Bounds via Ehrenfeucht-Fraïssé Games. IEEE Conference on Computational Complexity, p.190-201, 2006.
- Kreidler et al. 1997] Kreidler M., Seese D.: Monadic NP and Built-in Trees. Lecture Notes in Computer Science, 1258:260-274, 1997. [Kreidler et al. 1998] Kreidler M., Seese D.: Monadic NP and Graph Minors. Lecture Notes in Computer Science, 1584:126-141, 1998. [Libkin 2004] Libkin L.: Elements of Finite Model Theory. Springer, 2004. [Schwentick 1995] Schwentick T.: Graph Connectivity, Monadic NP and Built-in Rela- tions of Moderate Degree. In Proc. of the 22nd International Colloq. on Automata, Languages, and Programming, pages 405-416, 1995.
- Schwentick T.: On Winning Ehrenfeucht Games and Monadic NP. Annals of Pure and Applied Logic, 79:61-92, 1996. [Schwentick 1997] Schwentick T.: Padding and the Expressive Power of Existential Second-Order Logics. In 11th Annual Conference of the EACSL, CSL'97, pages 461-477, 1997.
- Stockmeyer 1977] Stockmeyer L.: The Polynomial-Time Hierarchy. Theoretical Com- puter Science, 3:1-22, 1977.