Simple statistical models for river networks
1991, Physica A: Statistical Mechanics and its Applications
https://doi.org/10.1016/0378-4371(91)90221-WAbstract
The geometric scaling properties associated with simple river network models have been studied using computer simulations. In these models the river networks arc comprised of random trajectories which start at randomly selected positions on a square lattice and continue until they either reach an edge of the lattice or join a previous trajectory to form a branched network. For those cases where the trajectories are either self-avoiding random walks (SAWS) or indefinitely growing self-avoiding walks (IGSAWs) the river basins are compact but have fractal basin boundaries with a dimensionality near to 514. For the IGSAW model the longest river is a self-similar fractal with a fractal dimensionality close to or equal to that of the IGSAW itself. If the trajectory is a directed walk. then the model is very similar to the Scheidegger river network model. In this case the basin boundary and the longest channei are self-affine Brownian processes. The resuhs ohtaincd from the IGSAW and directed walk models can be dcsxibed in terms of a simple scaling model. For the SAW models this scaling picture does not apply and it appears that practical simulations are far from the asymptotic (large system size) limit.
References (28)
- R.E. Horton, Geol. Sot. Am. Bull. 56 (1945) 275.
- A.N. Strahler, Am. Geophys. Union Trans. 38 ( 1957) 913.
- A.17. Abrahams, Water Resour. Res. 20 (1984) 161.
- R-L. Shreve, J. Geol. 74 (1966) 17.
- J.H. Hack, U.S. Geol. Surv. Professional Paper 294-B (1957) 45.
- B.B. MandeEbrot, The Fractal Geometry of Nature (Freeman, New York, lY82).
- J. Feder, Fractals (Plenum, New York 1988).
- L.B. Leopold and T. Maddock, U.S. Gcol. Surv. Prof. Pap. 252 (1953).
- K.J. Gregory and D.E. Walling, Drainage Basin Form and Process: A Gcomorphological Approach (Arnold. London. 1973).
- L.B. Leopold and W.B. Langbein, U.S. Geol. Surv. Prof. Pap. 500-A (1962).
- I] H. Schcnk, J. Gcophys. Res. 68 (1963) 5739.
- A.D. Howard. Geogr. Anal. 3 (1971) 29.
- D.L. Dunherlcy, J. Gcol. 85 (1977) 459.
- J.T. Hack. U.S. Geol. Surv. Prof. Pap. 504-B ( 1965).
- A.E. Schcidcggcr, Int. Assoc. Sci. Hydrol. Bull. 12 (1967) IS.
- H. Takavasu. Phys. Rev. Lett. 63 (1989) 2563.
- G. Hub&. Physica A 170 (1991) 463.
- I. Seginer. Water Resour. Res. 5 (1969) 591.
- A.:!. Howard. Gcol. Sot. Am. Bull. 82 (1971) 1355.
- P.J. Flory. Principles of Polymer Chemistry (Cornell Univ. Press. Ithaca. NY. 1971).
- K. Krcmer and J.W. Lyklema. Phys. Rev. Lctt. 54 (1985) 267.
- K. Kremcr and J.W. Lyklema. J. Phys. A 18 (1985) 1515.
- M. Matsushita and P. Meakin. Phys. Rev. A 37 (1988) 3645.
- H. Kondoh, M. Matsushita and Y. Fukuda, J. Phys. Sot. Jpn. 56 (1987) 1913.
- H. Meirovitch. J. Chem. Phys. 79 (1983) 502; 81 (1984) 1053.
- H. Meirovitch. Phys. Rev A 32 (1984) 3699, 3709.
- H. Meirovitch and H.A. Lim. Phys. Rev. Lett. 62 (1989) 2640.
- W.B. Langbcin. U.S. Geol. Surv. Water-Supply Pap. 26%~ (1947).