Geometry of river networks. I. Scaling, fluctuations, and deviations
2001, Physical review. E, Statistical, nonlinear, and soft matter physics
https://doi.org/10.1103/PHYSREVE.63.016115Abstract
This paper is the first in a series of three papers investigating the detailed geometry of river networks. Branching networks are a universal structure employed in the distribution and collection of material. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, here we report a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the sc...
References (69)
- † Author to whom correspondence should be addressed; Electronic address: dodds@segovia.mit.edu; URL: http://segovia. mit.edu/ ‡ Electronic address: dan@segovia.mit.edu
- R. Albert, H. Jeong, and A.-L. Barabasi, Nature 401(6749), 130 (1999).
- D. J. Watts and S. J. Strogatz, Nature 393, 440 (1998).
- M. Zamir, J. Theor. Biol. 197, 517 (1999).
- S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and T. A. Witten, Phys. Rev. E 53(5), 4673 (1996).
- C. Cherniak, M. Changizi, and D. Kang, Phys. Rev. E 59(5) (1999).
- B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).
- I. Rodríguez-Iturbe and A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge University Press, Great Britain, 1997).
- A. Rinaldo, I. Rodríguez-Iturbe, and R. Rigon, Annu. Rev. Earth Planet. Sci 26, 289 (1998).
- P. Ball, The Self-Made Tapestry (Oxford, UK, 1998).
- P. S. Dodds and D. H. Rothman, Annu. Rev. Earth Planet. Sci. 28, 571 (2000).
- J. T. Hack, U.S. Geol. Surv. Prof. Pap. 294-B, 45 (1957).
- A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti, and I. Rodríguez-Iturbe, Phys. Rev. E 53(2), 1510 (1996).
- R. Rigon, I. Rodríguez-Iturbe, A. Maritan, A. Gia- cometti, D. G. Tarboton, and A. Rinaldo, Water Resour. Res. 32(11), 3367 (1996).
- H. Jaeger, S. Nagel, and R. Behringer, Rev. Mod. Phys. 68(4), 1259 (1996).
- L. Kadanoff, Rev. Mod. Phys. 71(1), 435 (1999).
- T. R. Smith and F. P. Bretherton, Water Resour. Res. 3(6), 1506 (1972).
- S. Kramer and M. Marder, Phys. Rev. Lett. 68(2), 205 (1992).
- N. Izumi and G. Parker, Journal of Fluid Mechanics 283, 341 (1995).
- K. Sinclair and R. C. Ball, Phys. Rev. Lett. 76(18), 3360 (1996).
- J. R. Banavar, F. Colaiori, A. Flammini, A. Gia- cometti, A. Maritan, and A. Rinaldo, Phys. Rev. Lett. 78, 4522 (1997).
- E. Somfai and L. M. Sander, Phys. Rev. E 56(1), R5 (1997).
- R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett. 80(19), 4349 (1998).
- R. Pastor-Satorras and D. H. Rothman, J. Stat. Phys. 93, 477 (1998).
- M. Cieplak, A. Giacometti, A. Maritan, A. Rinal- do, I. Rodríguez-Iturbe, and J. R. Banavar, J. Stat. Phys. 91(1/2), 1 (1998).
- A. Giacometti, Local minimal energy landscapes in river networks (2000), preprint.
- H. Takayasu and H. Inaoka, Phys. Rev. Lett. 68(7), 966 (1992).
- R. L. Leheny, Phys. Rev. E 52(5), 5610 (1995).
- G. Caldarelli, A. Giacometti, A. Maritan, I. Rodríguez-Iturbe, and A. Rinaldo, Phys. Rev. E 55(5), 4865 (1997).
- C. P. Stark, Nature 352, 405 (1991).
- T. Sun, P. Meakin, and T. Jøssang, Phys. Rev. E 49(6), 4865 (1994).
- T. Sun, P. Meakin, and T. Jøssang, Phys. Rev. E 51(6), 5353 (1995).
- L. B. Leopold and W. B. Langbein, U.S. Geol. Surv. Prof. Pap. 500-A, 1 (1962).
- A. E. Scheidegger, Bull. Int. Assoc. Sci. Hydrol. 12(1), 15 (1967).
- S. S. Manna and B. Subramanian, Phys. Rev. Lett. 76(18), 3460 (1996).
- A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar, Science 272, 984 (1996).
- P. S. Dodds and D. H. Rothman, Geometry of River Networks II: Distributions of Component Size and Number (2000), submitted to PRE.
- P. S. Dodds and D. H. Rothman, Geometry of River Networks III: Characterization of Component Con- nectivity (2000), submitted to PRE.
- R. E. Horton, Bull. Geol. Soc. Am 56(3), 275 (1945).
- P. S. Dodds and D. H. Rothman, Phys. Rev. E 59(5), 4865 (1999), cond-mat/9808244.
- E. Tokunaga, Geophys. Bull. Hokkaido Univ. 15, 1 (1966).
- E. Tokunaga, Geogr. Rep., Tokyo Metrop. Univ. 13, 1 (1978).
- E. Tokunaga, Trans. Jpn. Geomorphol. Union 5(2), 71 (1984).
- D. M. Gray, J. Geophys. Res. 66(4), 1215 (1961).
- J. E. Mueller, Geological Society of America Bulletin 83, 3471 (1972).
- M. P. Mosley and R. S. Parker, Geological Society of America Bulletin 84, 3123 (1973).
- J. E. Mueller, Geological Society of America Bulletin 84, 3127 (1973).
- D. R. Montgomery and W. E. Dietrich, Science 255, 826 (1992).
- R. Rigon, I. Rodríguez-Iturbe, and A. Rinalod, Water Resour. Res. 34(11), 3181 (1998).
- The topography used to extract areas and stream lengths is a composite of United States Geologi- cal Survey three-arc-second digital elevation models available on the Internet at www.usgs.gov. These datasets provide grids of elevation data with hor- izontal resolution on the order of 90 meters. The Kansas river was analyzed directly from the data while the Mississippi basin was studied on a coarse- grained version with horizontal resolution of approx- imately 1000 meters.
- D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe, Water Resour. Res. 26(9), 2243 (1990).
- H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev. A 37(8), 3110 (1988).
- P. Meakin, J. Feder, and T. Jøssang, Physica A 176, 409 (1991).
- G. Huber, Physica A 170, 463 (1991).
- D. Dhar and S. N. Majumdar, J. Phys. A: Math. Gen. 23, 4333 (1990).
- D. Dhar, Physica A 186, 82 (1992).
- D. Dhar, Physica A 263, 4 (1999).
- W. Feller, An Introduction to Probability Theory and Its Applications, vol. I (John Wiley & Sons, New York, 1968), third ed.
- W. Feller, An Introduction to Probability Theory and Its Applications, vol. II (John Wiley & Sons, New York, 1968), third ed.
- The data for the Nile and Congo was obtained from the United States Geological Survey's 30-arc-second Hydro1K dataset which may be accessed on the Internet at edcftp.cr.usgs.gov. Note that these Hydro1K datasets have undergone the extra process- ing of projection onto a uniform grid.
- The dataset used for the Amazon has a horizontal resolution of approximately 1000 meters and comes from 30 arc second terrain data provided by the National Imagery and Mapping Agency available on the Internet at www.nima.mil.
- W. Dietrich and D. Montgomery, in Scale Depen- dence and Scale Invariance in Hydrology, edited by G. Sposito (Cambridge University Press, Cambridge, United Kingdom, 1998), pp. 30-60.
- W. E. Dietrich and T. Dunne, in Channel Network Hydrology, edited by K. Beven and M. Kirkby (John Wiley & Sons Ltd, New York, 1993), chap. 7, pp. 175-219.
- A. N. Strahler, EOS Trans. AGU 38(6), 913 (1957).
- S. A. Schumm, Bull. Geol. Soc. Am 67, 597 (1956).
- S. Peckham and V. Gupta, Water Resour. Res. 35(9), 2763 (1999).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992), second ed.
- E. L. Lehman, Nonparametrics : statistical methods based on ranks (Holden-Day, San Francisoc, 1975).
- P. Sprent, Applied Nonparametric Statistical Meth- ods (Chapman & Hall, New York, 1993), second ed.