Academia.eduAcademia.edu

Outline

Polyomino tilings, cellular automata and codicity

1995, Theoretical Computer Science

https://doi.org/10.1016/0304-3975(94)00201-S

Abstract

As usual, a 4-connex finite part of Z2 is called a polyomino. Recognizing whether a given polyomino can be tiled by translated copies of tiles taken from a given family of polyominoes is obviously decidable. On the contrary, deciding whether a given set of polyominoes is a code has been shown to be undecidable (Beauquier and Nivat, 1993). In this paper, we define various classes of codes and study the complexity of tiling recognition for these classes and their mutual relations. Specially, we study the class of polyominoe families, which we call neighbourhood codes, which generate tilings which are recognizable by cellular automata using only neighbourhood relations. We prove that there exist codes which are not neighbourhood codes, and we give an example of such a code.

References (12)

  1. P. Aigrain and M. Nivat, A characterization of convex domino-tilable polyominoes by their diagonal sections, in: J. Mazoyer, ed., Proc. 2nd Workshop on Polyominoes and Tilings, Cole Normale Sup&ieure de Lyon, June 1992.
  2. D. Beauquier, Undecidable problem about rational sets and contoUr words of polyominoes, Inform. Process. Lett. 37 (1991) 257-263.
  3. D. Beauquier and M. Nivat, Tiling pictures of the plane with two bars, a horizontal and a vertical one, in: D. Beauquier, ed., Actes du Seminaire Polyominos et Pavages, Universid Paris Val de Marne, Juin 1991.
  4. D. Beauquier and M. Nivat, Codicity and simplicity in the plane, Rapport de Recherche No. 88-66, LITP, 1993.
  5. R. Berger, Undecidability of the Domino Problem, Mem. Amer. Math. Sot., Vol. 66 ( AMS, Providence, RI, 1966).
  6. J. Berstel and D. Perrin, Theory of Codes (Academic Press, New York, 1985).
  7. B. Chlebus, Domino-tiling games, J. Comput. System Sci. 32 (1986) 374-392.
  8. M. Cosnard, Recouvrement de pieces trap&oTdales par H2 -V2, in: D. Beauquier, ed., Actes du Seminaire Polyominos et Pavages, Universite de Paris Val De Marne, Juin 1991.
  9. H. Freeman, Computer processing of line drawing images, Comput. Surveys 6 (1974) 57-98.
  10. D. Giammaresi and A. Restivo, Recognizable picture languages, in: M. Nivat, A. Saoudi and P.S.P. Wang, eds., Proc. Internat. Coil. on Parallel Image Processing, Institut Blaise Pascal, Paris, June 1991.
  11. Maire, Reconnaissance de recouvrements et generation d'images du plan, M&moire de D.E.A., Universiti: Paul Sabatier, Juin 1991.
  12. M. Robson, Le recouvrement dune figure par H, -V. est NP-Complet, in: D. Beauquier, ed., Actes du Seminaire Polyominos et Pavages, Universite de Paris Val de Mame, Juin 1991.