Academia.eduAcademia.edu

Outline

Matter and dynamics in closed cosmologies

2005, Physical Review D

https://doi.org/10.1103/PHYSREVD.71.083506

Abstract

To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein's field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein's static model, we present a comprehensive dynamical description, which includes asymptotic behavior, of models in the neighborhood of the Einstein model; these results make earlier claims about "homoclinic phenomena and chaos" highly questionable. We also discuss aspects of the global asymptotic dynamics, in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results.

References (18)

  1. J. Wainwright and G. F. R. Ellis. Dynamical systems in cosmology. Cambridge University Press, Cambridge, 1997.
  2. C. Uggla and H. von Zur-Mühlen. Class. Quantum Grav. 7 : 1365-1385 (1990).
  3. G. F. R. Ellis and M. Goliath. Phys. Rev. D 60 : 023502 (1999).
  4. A. Coley and M. Goliath. Phys. Rev. D 62 : 043526 (2000).
  5. X.-f. Lin and R. M. Wald. Phys. Rev. D 41 : 2444-2448 (1990).
  6. A. Rendall. Math. Proc. Camb. Phil. Soc. 118 : 511-526 (1995).
  7. H. P. de Oliveira, I. Damião Soares and T. J. Stuchi. Phys. Rev. D 56 : 730-740 (1997).
  8. R. Barguine, H. P. de Oliveira, I. Damião Soares and E. V. Tonini. Phys. Rev. D 63 : 063502 (2001).
  9. H. P. de Oliveira, A. M. Ozorio de Almeida, I. Damião Soares and E. V. Tonini. Phys. Rev. D 65 : 083511 (2002).
  10. C. Uggla,, H. van Elst, J. Wainwright and G. F. R. Ellis. Phys. Rev. D 68 : 103502 (2003).
  11. A. Ashtekar, R. S. Tate and C. Uggla. Int. J. Mod. Phys. D 2 : 15-50 (1993).
  12. J. M. Heinzle and C. Uggla. Ann. Phys. 308-1 : 18-61 (2003).
  13. J. M. Heinzle, N. Röhr and C. Uggla. Class. Quantum Grav. 20 : 4567-4586 (2003).
  14. C. W. Misner, K. S. Thorne and J. A. Wheeler. Gravitation. W. H. Freeman and Company, San Francisco, 1973.
  15. J. D. Crawford. Rev. Mod. Phys. 63-4 : 991-1038 (1991).
  16. A. Strauss and J. A. Yorke. Math. Syst. Theory 1 : 175-182 (1967).
  17. J. T. Horwood, M. J. Hancock, D. The and J. Wainwright. Class. Quantum Grav. 20 : 1757- 1778 (2003).
  18. J. Wainwright, M. J. Hancock and C. Uggla. Class. Quantum Grav. 16 : 2577-2598 (1999).