Matter and dynamics in closed cosmologies
2005, Physical Review D
https://doi.org/10.1103/PHYSREVD.71.083506Abstract
To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein's field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein's static model, we present a comprehensive dynamical description, which includes asymptotic behavior, of models in the neighborhood of the Einstein model; these results make earlier claims about "homoclinic phenomena and chaos" highly questionable. We also discuss aspects of the global asymptotic dynamics, in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results.
References (18)
- J. Wainwright and G. F. R. Ellis. Dynamical systems in cosmology. Cambridge University Press, Cambridge, 1997.
- C. Uggla and H. von Zur-Mühlen. Class. Quantum Grav. 7 : 1365-1385 (1990).
- G. F. R. Ellis and M. Goliath. Phys. Rev. D 60 : 023502 (1999).
- A. Coley and M. Goliath. Phys. Rev. D 62 : 043526 (2000).
- X.-f. Lin and R. M. Wald. Phys. Rev. D 41 : 2444-2448 (1990).
- A. Rendall. Math. Proc. Camb. Phil. Soc. 118 : 511-526 (1995).
- H. P. de Oliveira, I. Damião Soares and T. J. Stuchi. Phys. Rev. D 56 : 730-740 (1997).
- R. Barguine, H. P. de Oliveira, I. Damião Soares and E. V. Tonini. Phys. Rev. D 63 : 063502 (2001).
- H. P. de Oliveira, A. M. Ozorio de Almeida, I. Damião Soares and E. V. Tonini. Phys. Rev. D 65 : 083511 (2002).
- C. Uggla,, H. van Elst, J. Wainwright and G. F. R. Ellis. Phys. Rev. D 68 : 103502 (2003).
- A. Ashtekar, R. S. Tate and C. Uggla. Int. J. Mod. Phys. D 2 : 15-50 (1993).
- J. M. Heinzle and C. Uggla. Ann. Phys. 308-1 : 18-61 (2003).
- J. M. Heinzle, N. Röhr and C. Uggla. Class. Quantum Grav. 20 : 4567-4586 (2003).
- C. W. Misner, K. S. Thorne and J. A. Wheeler. Gravitation. W. H. Freeman and Company, San Francisco, 1973.
- J. D. Crawford. Rev. Mod. Phys. 63-4 : 991-1038 (1991).
- A. Strauss and J. A. Yorke. Math. Syst. Theory 1 : 175-182 (1967).
- J. T. Horwood, M. J. Hancock, D. The and J. Wainwright. Class. Quantum Grav. 20 : 1757- 1778 (2003).
- J. Wainwright, M. J. Hancock and C. Uggla. Class. Quantum Grav. 16 : 2577-2598 (1999).