Slowly rotating perfect fluids with a cosmological constant
2015, General Relativity and Gravitation
https://doi.org/10.1007/S10714-015-1982-5Abstract
Hartle's slow rotation formalism is developed in the presence of a cosmological constant. We find the generalisation of the Hartle-Thorne vacuum metric, the Hartle-Thorne-(anti)-de Sitter metric, and find that it is always asymptotically (anti)-de Sitter. Next we consider Wahlquist's rotating perfect fluid interior solution in Hartle's formalism and discuss its matching to the Hartle-Thorne-(anti)-de Sitter metric. It is known that the Wahlquist solution cannot be matched to an asymptotically flat region and therefore does not provide a model of an isolated rotating body in this context. However, in the presence of a cosmological term, we find that it can be matched to an asymptotic (anti)-de Sitter space and we are able to interpret the Wahlquist solution as a model of an isolated rotating body, to second order in the angular velocity.
References (19)
- G. Neugebauer and R. Meinel, Phys. Rev. Lett. 75 (1995) 3046 [gr-qc/0302060].
- C. Klein, Phys. Rev. D 63 (2001) 064033 [gr-qc/0102083].
- J. E. Cuch, A. Gil-Rivero, A. Molina and E. Ruiz, Gen. Rel. Grav. (2013) [Erratum-ibid. 45 (2013) 1457] [arXiv:1212.4456 [gr-qc]].
- J. B. Hartle, Astrophys. J. 150 (1967) 1005.
- J. B. Hartle and K. S. Thorne, Astrophys. J. 153 (1968) 807.
- M. Bradley, G. Fodor, M. Marklund and Z. Perjes, Class. Quant. Grav. 17 (2000) 351 [gr-qc/9910001].
- M. Bradley, G. Fodor, M. Marklund, and Z. Perjes, Class.Quant.Grav. 17 351-359, (2000) arxiv:0002014 [gr-qc]
- M. Bradley, D. Eriksson, G. Fodor and I. Racz, Phys. Rev. D 75 (2007) 024013 [gr-qc/0612046].
- A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116 (1998) 1009 [astro-ph/9805201].
- S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astro- phys. J. 517 (1999) 565 [astro-ph/9812133].
- J. N. Islam, Rotating fields in general relativity, Cambridge University Press, Cambridge, (1985).
- C. Charmousis, D. Langlois, D. A. Steer and R. Zegers, JHEP 0702 (2007) 064 [gr-qc/0610091].
- B. Carter, Phys. Lett. A 26 (1968) 399.
- G. Fodor, M. Marklund and Z. Perjes, Class. Quant. Grav. 16 1999 453-463
- A. Ashtekar, B Bonga and A. Kesavan, Class. Quant. Grav. 1 (1984) L39- L44.
- A. Ashtekar, B. Bonga and A. Kesavan, arXiv:1409.3816 [gr-qc].
- H. D. Wahlquist Phys. Rev. 172 (1968) 1291-1296.
- W. Roos, Gen. Rel. Grav. 7 (1976) 431-444.
- G. Fodor, Z. Perjes and M. Bradley, Phys. Rev. D 66 (2002) 084012 [gr-qc/0207099].