Academia.eduAcademia.edu

Outline

Slowly rotating perfect fluids with a cosmological constant

2015, General Relativity and Gravitation

https://doi.org/10.1007/S10714-015-1982-5

Abstract

Hartle's slow rotation formalism is developed in the presence of a cosmological constant. We find the generalisation of the Hartle-Thorne vacuum metric, the Hartle-Thorne-(anti)-de Sitter metric, and find that it is always asymptotically (anti)-de Sitter. Next we consider Wahlquist's rotating perfect fluid interior solution in Hartle's formalism and discuss its matching to the Hartle-Thorne-(anti)-de Sitter metric. It is known that the Wahlquist solution cannot be matched to an asymptotically flat region and therefore does not provide a model of an isolated rotating body in this context. However, in the presence of a cosmological term, we find that it can be matched to an asymptotic (anti)-de Sitter space and we are able to interpret the Wahlquist solution as a model of an isolated rotating body, to second order in the angular velocity.

References (19)

  1. G. Neugebauer and R. Meinel, Phys. Rev. Lett. 75 (1995) 3046 [gr-qc/0302060].
  2. C. Klein, Phys. Rev. D 63 (2001) 064033 [gr-qc/0102083].
  3. J. E. Cuch, A. Gil-Rivero, A. Molina and E. Ruiz, Gen. Rel. Grav. (2013) [Erratum-ibid. 45 (2013) 1457] [arXiv:1212.4456 [gr-qc]].
  4. J. B. Hartle, Astrophys. J. 150 (1967) 1005.
  5. J. B. Hartle and K. S. Thorne, Astrophys. J. 153 (1968) 807.
  6. M. Bradley, G. Fodor, M. Marklund and Z. Perjes, Class. Quant. Grav. 17 (2000) 351 [gr-qc/9910001].
  7. M. Bradley, G. Fodor, M. Marklund, and Z. Perjes, Class.Quant.Grav. 17 351-359, (2000) arxiv:0002014 [gr-qc]
  8. M. Bradley, D. Eriksson, G. Fodor and I. Racz, Phys. Rev. D 75 (2007) 024013 [gr-qc/0612046].
  9. A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116 (1998) 1009 [astro-ph/9805201].
  10. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astro- phys. J. 517 (1999) 565 [astro-ph/9812133].
  11. J. N. Islam, Rotating fields in general relativity, Cambridge University Press, Cambridge, (1985).
  12. C. Charmousis, D. Langlois, D. A. Steer and R. Zegers, JHEP 0702 (2007) 064 [gr-qc/0610091].
  13. B. Carter, Phys. Lett. A 26 (1968) 399.
  14. G. Fodor, M. Marklund and Z. Perjes, Class. Quant. Grav. 16 1999 453-463
  15. A. Ashtekar, B Bonga and A. Kesavan, Class. Quant. Grav. 1 (1984) L39- L44.
  16. A. Ashtekar, B. Bonga and A. Kesavan, arXiv:1409.3816 [gr-qc].
  17. H. D. Wahlquist Phys. Rev. 172 (1968) 1291-1296.
  18. W. Roos, Gen. Rel. Grav. 7 (1976) 431-444.
  19. G. Fodor, Z. Perjes and M. Bradley, Phys. Rev. D 66 (2002) 084012 [gr-qc/0207099].