Academia.eduAcademia.edu

Outline

Explicit Equations of Some Elliptic Modular Surfaces

2007, Rocky Mountain Journal of Mathematics

https://doi.org/10.1216/RMJM/1181068772

Abstract

We present explicit equations of semi-stable elliptic surfaces (i.e., having only type In singular fibers) which are associated to the torsion-free genus zero congruence subgroups of the modular group as classified by A. Sebbar.

References (19)

  1. W. Barth, C. Peters, and A. van de Ven, Compact Complex Surfaces. Ergebnisse der Mathematik und ihre Grenzgebiete, 3, Springer-Verlag, 1984.
  2. A. Beauville, Les familles stables de courbes elliptiques sur P 1 admettant quarte fibres singulières, C. R. Acad. Sc. Paris, 294 (1982), pp. 657-660.
  3. B.J. Birch and W. Kuyk, Modular functions of one variable IV. Lectire Notes in Math., 476, Springer-Verlag, 1975.
  4. J.W.S. Cassels, Lectures on Elliptic Curves. London Math. Soc. Student Texts, 24, Cam- bridge University Press, 1991.
  5. E.W. Howe, F. Leprévost, and B. Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math., 12 (2000), pp. 315-364.
  6. Y. Iron, An explicit presentation of a K3 surface that realizes [1, 1, 1, 1, 1, 19], MSc. Thesis, Hebrew University of Jerusalem, 2003.
  7. W.E. Lang, Extremal rational elliptic surfaces in characteristic p. I. Beauville surfaces, Math. Z., 207 (1991), pp. 429-437.
  8. W.E. Lang, Extremal rational elliptic surfaces in characteristic p. II. Surfaces with three or fewer singular fibers, Ark. Mat., 32 (1994), pp. 423-448.
  9. R. Kloosterman, Extremal elliptic surfaces and infinitesimal Torelli, accepted for publica- tion in Michigan Math. J., 2003. arXiv: math.AG/0210386.
  10. D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., 33 (1976), pp. 193-237.
  11. R. Livné and N. Yui, The modularity of certain Calabi-Yau threefolds, preprint, 2003. arXiv: math.AG/0304497.
  12. J. McKay and A. Sebbar, Arithmetic semistable elliptic surfaces, Proc. on Moonshine and related topics (Montreal, QC, 1999), pp. 119-130.
  13. R. Miranda, The Basic Theory of Elliptic Surfaces. Dipartimento di Matematica dell'universitá di Pisa, 1989.
  14. R. Miranda and U. Persson, Configurations of In fibers on elliptic K3 surfaces, Math. Z., 201 (1989), pp. 339-361.
  15. M. Nori, On certain elliptic surfaces with maximal Picard number, Topology, 24 (1985), pp. 175-186.
  16. A. Sebbar, Classification of torsion-free genus zero congruence subgroups, Proc. Amer. Math. Soc., 129 (2001), pp. 2517-2527.
  17. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), pp. 20-59.
  18. T. Shioda, Discrete moduli and integral points, Notes of a lecture presented on 8/11/2002.
  19. W.W. Stothers, Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford Ser. 2, 32 (1981), pp. 349-370.