Modular curves of genus 2
2002, Mathematics of Computation
Abstract
We prove that there are exactly 149 genus two curves C defined over Q such that there exists a nonconstant morphism π : X 1 (N) → C defined over Q and the jacobian of C is Q-isogenous to the abelian variety A f attached by Shimura to a newform f ∈ S 2 (Γ 1 (N)). We determine the corresponding newforms and present equations for all these curves.
References (27)
- A. O. L. Atkin and W. C. W. Li, Twists of newforms and pseudo-eigenvalues of W -operators, Invent. Math. 48 (1978), no. 3, 221-243. MR 80:10040
- P. Bayer and J. González, On the Hasse-Witt invariants of modular curves, Experiment. Math. 6 (1997), no. 1, 57-76. MR 98h:11074
- O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math. (1888), no. 10, 47-70.
- C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 2002d:11058
- A. Brumer, The rank of J 0 (N ), Astérisque (1995), no. 228, 3, 41-68, Columbia University Number Theory Seminar (New York, 1992). MR 96f:11083
- H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468. MR 89c:11083
- G. Cardona, J. González, J. C. Lario, and A. Rio, On curves of genus 2 with Jacobian of GL 2 -type, Manuscripta Math. 98 (1999), no. 1, 37-54. MR 99j:11068
- J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. MR 99e:11068
- P. Deligne and J-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 (1975). MR 52:284
- M. Furumoto and Y. Hasegawa, Hyperelliptic quotients of modular curves X 0 (N ), Tokyo J. Math. 22 (1999), no. 1, 105-125. MR 2000d:11079
- J. González Rovira, Equations of hyperelliptic modular curves, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 779-795. MR 93g:11064
- J. González and J-C. Lario, Q-curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503. MR 2002e:11070
- Y. Hasegawa, Hyperelliptic modular curves X * 0 (N ), Acta Arith. 81 (1997), no. 4, 369-385. MR 99a:11075
- Y. Hasegawa and K. Hashimoto, Hyperelliptic modular curves X * 0 (N ) with square-free levels, Acta Arith. 77 (1996), no. 2, 179-193. MR 97m:11082
- N. Ishii and F. Momose, Hyperelliptic modular curves, Tsukuba J. Math. 15 (1991), no. 2, 413-423. MR 93b:14037
- Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math. 94 (1994), no. 1, 51-79. MR 96b:14038
- J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes élliptiques, J. Number Theory 13 (1981), no. 2, 123-137. MR 83i:12006
- J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190. MR 48:8512
- F. Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 89-109. MR 84a:10025
- N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), no. 2, 405-418. MR 93i:11071
- A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. MR 51:514
- K. A. Ribet, Galois representations attached to eigenforms with Nebentypus, Lecture Notes in Math., Vol. 601. (1977), 17-51. MR 56:11907
- Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62. MR 82e:11043
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1. MR 47:3318
- G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, The Mathematical Society of Japan, Tokyo, 1961. MR 23:A2419
- M. Shimura, Defining equations of modular curves X 0 (N ), Tokyo J. Math. 18 (1995), no. 2, 443-456. MR 96j:11085
- W.A. Stein, Hecke: The modular forms calculator, Software (available online) (1999).