Academia.eduAcademia.edu

Outline

Modular curves of genus 2

2002, Mathematics of Computation

Abstract

We prove that there are exactly 149 genus two curves C defined over Q such that there exists a nonconstant morphism π : X 1 (N) → C defined over Q and the jacobian of C is Q-isogenous to the abelian variety A f attached by Shimura to a newform f ∈ S 2 (Γ 1 (N)). We determine the corresponding newforms and present equations for all these curves.

References (27)

  1. A. O. L. Atkin and W. C. W. Li, Twists of newforms and pseudo-eigenvalues of W -operators, Invent. Math. 48 (1978), no. 3, 221-243. MR 80:10040
  2. P. Bayer and J. González, On the Hasse-Witt invariants of modular curves, Experiment. Math. 6 (1997), no. 1, 57-76. MR 98h:11074
  3. O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math. (1888), no. 10, 47-70.
  4. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 2002d:11058
  5. A. Brumer, The rank of J 0 (N ), Astérisque (1995), no. 228, 3, 41-68, Columbia University Number Theory Seminar (New York, 1992). MR 96f:11083
  6. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468. MR 89c:11083
  7. G. Cardona, J. González, J. C. Lario, and A. Rio, On curves of genus 2 with Jacobian of GL 2 -type, Manuscripta Math. 98 (1999), no. 1, 37-54. MR 99j:11068
  8. J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. MR 99e:11068
  9. P. Deligne and J-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 (1975). MR 52:284
  10. M. Furumoto and Y. Hasegawa, Hyperelliptic quotients of modular curves X 0 (N ), Tokyo J. Math. 22 (1999), no. 1, 105-125. MR 2000d:11079
  11. J. González Rovira, Equations of hyperelliptic modular curves, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 779-795. MR 93g:11064
  12. J. González and J-C. Lario, Q-curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503. MR 2002e:11070
  13. Y. Hasegawa, Hyperelliptic modular curves X * 0 (N ), Acta Arith. 81 (1997), no. 4, 369-385. MR 99a:11075
  14. Y. Hasegawa and K. Hashimoto, Hyperelliptic modular curves X * 0 (N ) with square-free levels, Acta Arith. 77 (1996), no. 2, 179-193. MR 97m:11082
  15. N. Ishii and F. Momose, Hyperelliptic modular curves, Tsukuba J. Math. 15 (1991), no. 2, 413-423. MR 93b:14037
  16. Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math. 94 (1994), no. 1, 51-79. MR 96b:14038
  17. J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes élliptiques, J. Number Theory 13 (1981), no. 2, 123-137. MR 83i:12006
  18. J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190. MR 48:8512
  19. F. Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 89-109. MR 84a:10025
  20. N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), no. 2, 405-418. MR 93i:11071
  21. A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. MR 51:514
  22. K. A. Ribet, Galois representations attached to eigenforms with Nebentypus, Lecture Notes in Math., Vol. 601. (1977), 17-51. MR 56:11907
  23. Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62. MR 82e:11043
  24. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1. MR 47:3318
  25. G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, The Mathematical Society of Japan, Tokyo, 1961. MR 23:A2419
  26. M. Shimura, Defining equations of modular curves X 0 (N ), Tokyo J. Math. 18 (1995), no. 2, 443-456. MR 96j:11085
  27. W.A. Stein, Hecke: The modular forms calculator, Software (available online) (1999).