Academia.eduAcademia.edu

Outline

From intuitionistic to point-free topology

Abstract

Brouwer's pioneering results in topology, e. g. invariance of dimension, were devel-oped within a classical framework of mathematics. Some years later he explained that "in his topological work he tried to use only methods which he expected could be made constructive" [11, p. XIV]. It seems that very little of algebraic topol-ogy, homotopy and homology, has actually been developed constructively in any detail, or, at any rate, found its way to publication. In the comprehensive treatise Foundations of Constructive Mathematics, Beeson [4, pp. 26-27] writes however

References (27)

  1. M.A. Armstrong. Basic topology. Springer 1985.
  2. B. Banaschewski, T. Coquand and G. Sambin (eds.). Papers presented at the Second Workshop Formal Topology, Venice, April 2-4, 2002. Special issue of Ann. Pure Appl. Logic 137(2006).
  3. B. Banaschewski and C.J. Mulvey. A constructive proof of the Stone- Weierstrass theorem. J. Pure Appl. Algebra 116(1997), 25 -40.
  4. M. Beeson. Foundations of Constructive Mathematics. Springer 1985.
  5. E. Bishop and D.S. Bridges. Constructive Analysis. Springer 1985.
  6. T. Coquand, P. Dybjer, E. Palmgren and A. Setzer. Type-theoretic foundations for constructive mathematics. In preparation.
  7. T. Coquand. An intuitionistic proof of Tychonoff's theorem. J. Symbolic Logic 57(1992), pp. 28 -32.
  8. L. Crosilla and P. Schuster (eds.). From Sets and Types to Topology and Anal- ysis: Towards Practicable Foundations of Constructive Mathematics. Oxford Logic Guides, Oxford University Press 2005.
  9. G. Curi. Geometry of Observations: some contributions to (constructive) point-free topology. PhD Thesis, Siena 2004.
  10. H. Freudenthal. Zum intuitionistischen Raumbegriff. Compositio Math. 4(1936), pp. 82 -111.
  11. H. Freudenthal and A. Heyting. The Life of L.E.J. Brouwer. In: H. Freuden- thal (ed.). L.E.J. Brouwer, Collected works, vol. 2. North-Holland 1976.
  12. M.J. Greenberg. Lectures on Algebraic Topology. Benjamin, New York, 1967.
  13. W. He. Homotopy theory for locales. (Chinese). Acta Math. Sinica 46 (2003), no. 5, pp. 951 -960. (ISSN 0583-1431)
  14. P.T. Johnstone. Stone Spaces. Cambridge University Press 1982.
  15. P.T. Johnstone. The point of pointless topology. Bull. Amer. Math. Soc. 8(1983), pp. 41 -53.
  16. A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Memoirs Amer. Math. Soc. 309 (1984).
  17. J.F. Kennison. What is the fundamental group? J. Pure Appl. Algebra 59(1989), pp. 187 -200.
  18. P. Martin-Löf. Notes on Constructive Mathematics. Almqvist and Wiksell 1970.
  19. I. Moerdijk and G.C. Wraith. Connected, locally connected toposes are path- connected. Trans. Amer. Math. Soc. 295(1986), 849 -859.
  20. E. Palmgren. Predicativity problems in point-free topology. In: V. Stoltenberg-Hansen and J. Väänänen (eds.) Proceedings of the Annual Euro- pean Summer Meeting of the Association for Symbolic Logic, held in Helsinki, Finland, August 14-20, 2003, Lecture Notes in Logic 24, AK Peters, to ap- pear.
  21. E. Palmgren. Continuity on the real line and in formal spaces. In [8].
  22. E. Palmgren. Regular universes and formal spaces, Ann. Pure Appl. Logic 137(2006).
  23. G. Sambin. Intuitionistic formal spaces -a first communication. In: D. Sko- rdev (ed.) Mathematical Logic and its Applications. Plenum Press 1987, pp. 187 -204.
  24. A.S. Troelstra. Intuitionistic General Topology. PhD Thesis, Amsterdam 1966.
  25. A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, vol. 2. North-Holland 1988.
  26. S. Vickers. Localic completion of generalized metric spaces I. Preprint 2005.
  27. F. Waaldijk. Modern Intuitionistic Topology. PhD Thesis, Nijmegen 1998. ERIK PALMGREN DEPARTMENT OF MATHEMATICS, UPPSALA UNIVERSITY PO BOX 480, SE-751 06 UPPSALA, SWEDEN E-MAIL: palmgren@math.uu.se URL: www.math.uu.se