Academia.eduAcademia.edu

Outline

Constructive Mathematics, in Theory and Programming Practice

1997

https://doi.org/10.1093/PHILMAT/7.1.65

Abstract

The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on Martin-Löf's theory of types as a formal system for BISH.

References (45)

  1. H. P. Barendregt, The Lambda Calculus, North-Holland, Amsterdam, 1984.
  2. M.J. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, Heidelberg, 1985.
  3. Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
  4. Errett Bishop, "Mathematics as a numerical language", in Intuitionism and Proof Theory (A. Kino, J. Myhill, and R.E. Vesley, eds), 53-71, North- Holland, Amsterdam, 1970.
  5. Errett Bishop, "Schizophrenia in contemporary mathematics", in Errett Bishop: Reflections on Him and His Research (Murray Rosenblatt, ed.), Contemporary Mathematics 39, 1-32, American Math. Soc., Providence RI, 1984.
  6. E.A. Bishop and D.S. Bridges, Constructive Mathematics, Grundlehren der math. Wissenschaften 279, Springer-Verlag, Heidelberg, 1985.
  7. Nicolas Bourbaki, Elements of the History of Mathematics (translated from the French by John Meldrum), Springer-Verlag, Heidelberg, 1991.
  8. Douglas Bridges, "A constructive development of Chebyshev approxima- tion theory", J. Approx. Th. 30(2), 99-120, 1980.
  9. Douglas Bridges, "A constructive proximinality property of finite- dimensional linear spaces", Rocky Mountain J. Math. 11(4), 491-497, 1981.
  10. Douglas Bridges, "A constructive analysis of the Remes algorithm", J. Ap- prox. Theory 32(4), 257-270, 1981.
  11. Douglas Bridges, "Recent progress in constructive approximation theory", in The L.E.J. Brouwer Centenary Symposium (A.S. Troelstra and D. van Dalen, eds), 41-50, North-Holland, Amsterdam, 1982.
  12. Douglas Bridges, "Constructive Truth in Practice", to appear in Truth in Mathematics (Proceedings of the conference held at Mussomeli, Sicily, 13- 21 September 1995, H.G. Dales and G. Oliveri, eds), Oxford University Press, Oxford, 1997.
  13. Douglas Bridges, Constructive Mathematics-Its Set Theory and Practice, D.Phil. thesis, Oxford University, 1975.
  14. Douglas Bridges, "A constructive Morse theory of sets", in Mathematical Logic and Its Applications (D.G. Skordev, ed.), Plenum Press, New York, 1987.
  15. Douglas Bridges,"Constructive Mathematics: A Foundation for Com- putable Analysis", to appear in Proc. Dagstuhl Workshop on Computability and Constructivity in Analysis Dagstuhl, Germany, April 21-25, 1997).
  16. Douglas Bridges and Osvald Demuth, "On the Lebesgue measurability of continuous functions in constructive analysis", Bull. Amer. Math. Soc. 24(2), 259-276, 1991.
  17. Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes 97, Cambridge University Press, 1987.
  18. L.E.J. Brouwer, Over de Grondslagen der Wiskunde, Doctoral Thesis, Uni- versity of Amsterdam, 1907. Reprinted with additional material (D. van Dalen, ed.) by Matematisch Centrum, Amsterdam, 1981.
  19. M.A.E. Dummett, Elements of Intuitionism. Oxford University Press, Ox- ford, 1977.
  20. S. Feferman, "Constructive theories of functions and classes", in: Logic Colloquium '78 (M. Boffa, D. van Dalen, K. McAloon, eds), North-Holland, Amsterdam, 1979.
  21. H. Friedman, "Set theoretic foundations for constructive analysis", Ann. of Math. 105, 1-28, 1977.
  22. N.D. Goodman and J. Myhill, "Choice implies excluded middle", Zeit. Logik und Grundlagen der Math. 24, 461, 1978.
  23. M.C. Henson and S. Reeves, "Intensional Z" (extended abstract), in FMP '97: Proceedings of Formal Methods Pacific '97 (L. Groves and S. Reeves, eds), 305-306, Springer-Verlag, Singapore, 1997.
  24. A. Heyting, Intuitionism-An Introduction (Third Edition). North- Holland, Amsterdam, 1971.
  25. David Hilbert, "Die Grundlagen der Mathematik", Hamburger Mathema- tische Einzelschriften 5, Teubner, Leipzig, 1928. Reprinted in English trans- lation in [44], in which the exact quotation appears on page 476.
  26. W.A. Howard, "The formula-as-types notion of construction", in To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J.P. Seldin and J.R. Hindley, eds), Academic Press, 1980.
  27. S. Karlin and W.J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience, New York, 1966.
  28. B.A. Kushner, Lectures on Constructive Mathematical Analysis, Amer. Math. Soc., Providence RI, 1985.
  29. P. Martin-Löf, "An intuitionistic theory of types: predicative part", in Logic Colloquium 1973 (H.E. Rose and J.C. Shepherdson, eds), 73-118, North-Holland, Amsterdam, 1975.
  30. P. Martin-Löf, "Constructive mathematics and computer programming", in Proceedings of 6th International Congress for Logic, Methodology and Phi- losophy of Science (L. Jonathan Cohen ed), North-Holland, Amsterdam, 1980.
  31. P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis, Naples, 1984.
  32. P. Martin-Löf, "Constructive mathematics and computer programming", in Mathematical Logic and Programming Languages (C.A.R. Hoare and J.C. Shepherdson, eds), Prentice-Hall International, Englewood Cliffs, N.J.,1985.
  33. Ray Mines, Fred Richman, Wim Ruitenburg, A Course in Constructive Algebra, Universitext, Springer-Verlag, Heidelberg, 1988.
  34. A.P. Morse, A Theory of Sets, Academic Press, New York, 1965.
  35. John Myhill, "Some properties of intuitionistic Zermelo-Fraenkel set the- ory", in Cambridge Summer School in Mathematical Logic (A. Mathias and H. Rogers, eds.), 206-231, Lecture Notes in Mathematics 337, Springer- Verlag, Berlin, 1973.
  36. John Myhill, "Constructive Set Theory", J. Symbolic Logic 40(3), 347-382, 1975.
  37. S. Reeves, "Constructive Mathematics and programming", in Mathematical Structures for Software Engineering (B. de Neumann, D. Simpson, and G. Slater, eds), 219-246, Oxford University Press, 1991.
  38. S. Reeves, "Computer support for students' work in a formal system: Macpict", Int. J. Math. Education in Science and Technology 26(2), 159- 175, 1995.
  39. Fred Richman, "The fundamental theorem of algebra: a con- structive development without choice", at html://www.math.fau.edu/ Richman/html/docs.htm
  40. Fred Richman, "Intuitionism as generalization" Philosophia Math. 5, 124- 128, 1990 (MR #91g:03014).
  41. Fred Richman, "Interview with a constructive mathematician", Modern Logic 6, 247-271, 1996.
  42. A.S. Troelstra and D. van Dalen, Constructivity in Mathematics: An In- troduction (two volumes). North Holland, Amsterdam, 1988.
  43. S. Thompson, Type Theory and Formal Programming, Addison-Wesley, Wokingham, England, 1991.
  44. Jean van Heijenoort, From Frege to Gödel, A Source Book in Mathematical Logic 1879-1931, Harvard University Press, Cambridge, Mass., 1967.
  45. W.P. van Stigt, Brouwer's Intuitionism, North-Holland, Amsterdam, 1990.