Academia.eduAcademia.edu

Outline

Towards the deformation quantization of linearized gravity

2005, General Relativity and Gravitation

https://doi.org/10.1007/S10714-005-0193-X

Abstract

We present a first attempt to apply the approach of deformation quantization to linearized Einstein's equations. We use the analogy with Maxwell equations to derive the field equations of linearized gravity from a modified Maxwell Lagrangian which allows the construction of a Hamiltonian in the standard way. The deformation quantization procedure for free fields is applied to this Hamiltonian. As a result we obtain the complete set of quantum states and its discrete spectrum.

Key takeaways
sparkles

AI

  1. The paper explores deformation quantization applied to linearized Einstein's equations, bridging classical and quantum gravity.
  2. The authors derive a Hamiltonian equivalent to an infinite sum of harmonic oscillators from a modified Maxwell Lagrangian.
  3. Deformation quantization allows representation of quantum observables without introducing operators, using a star-product instead.
  4. The energy spectrum derived from the Hamiltonian is discrete and exhibits vanishing zero-point energy.
  5. The study emphasizes a field-theoretical approach to linearized gravity, facilitating comparisons with quantum field theory.

References (22)

  1. H. J. Groenewold, Physica (Amsterdam) 12, 405 (1946);
  2. L. van Hove, Proc. R. Acad. Sci. Belgium 26, 1 (1951).
  3. A. Weinstein, Semin. Bourbaki, Asterique 789, 389 (1995).
  4. C. Zachos, hep-th/0110114.
  5. S. Waldmann, hep-th/0303080.
  6. A. C. Hirshfeld and P. Henselder, Am. J. Phys. 70, 537 (2002).
  7. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys. (N.Y.) 111, 61 (1978).
  8. J. Dito, Lett. Math. Phys. 20, 125 (1990).
  9. M. Kontsevich, q-alg/9709040.
  10. M. Dütch and K. Fredenhagen, hep-th/9807215, hep-th/0101079.
  11. M. Bordemann, H.C. Herbig and S. Waldmann, Comm. Math. Phys. 210, 107 (2000).
  12. A. S. Cattaneo and G. Felder, Comm. Math. Phys. 212, 591 (2000).
  13. H. Garcia-Compean, J.F. Plebanski, M. Przanowski and F.J. Turrubiates, Int. J. Mod. Phys. A 16, 2533 (2001).
  14. A. C. Hirshfeld and P. Henselder, Ann. Phys. 298, 382 (2002).
  15. F. Antonsen, gr-qc/9712012.
  16. H. Garcia-Compean, J.F. Plebanski, M. Przanowski and F.J. Turrubiates, J. Phys. A 33, 7935 (2000).
  17. D. Minic, hep-th/9909022.
  18. F. Antonsen, gr-qc/9710021.
  19. R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
  20. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman Ed., San Francisco, 1973).
  21. D. M. Gitman and I. V. Tyutin, Quantization of fields with constraints (Springer-Verlag, Berlin, 1990).
  22. N. N. Bogoliubov and D. V. Shirkov, Quantum fields (Benjamin Ed., USA, 1983)