Towards the deformation quantization of linearized gravity
2005, General Relativity and Gravitation
https://doi.org/10.1007/S10714-005-0193-XAbstract
We present a first attempt to apply the approach of deformation quantization to linearized Einstein's equations. We use the analogy with Maxwell equations to derive the field equations of linearized gravity from a modified Maxwell Lagrangian which allows the construction of a Hamiltonian in the standard way. The deformation quantization procedure for free fields is applied to this Hamiltonian. As a result we obtain the complete set of quantum states and its discrete spectrum.
Key takeaways
AI
AI
- The paper explores deformation quantization applied to linearized Einstein's equations, bridging classical and quantum gravity.
- The authors derive a Hamiltonian equivalent to an infinite sum of harmonic oscillators from a modified Maxwell Lagrangian.
- Deformation quantization allows representation of quantum observables without introducing operators, using a star-product instead.
- The energy spectrum derived from the Hamiltonian is discrete and exhibits vanishing zero-point energy.
- The study emphasizes a field-theoretical approach to linearized gravity, facilitating comparisons with quantum field theory.
References (22)
- H. J. Groenewold, Physica (Amsterdam) 12, 405 (1946);
- L. van Hove, Proc. R. Acad. Sci. Belgium 26, 1 (1951).
- A. Weinstein, Semin. Bourbaki, Asterique 789, 389 (1995).
- C. Zachos, hep-th/0110114.
- S. Waldmann, hep-th/0303080.
- A. C. Hirshfeld and P. Henselder, Am. J. Phys. 70, 537 (2002).
- F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys. (N.Y.) 111, 61 (1978).
- J. Dito, Lett. Math. Phys. 20, 125 (1990).
- M. Kontsevich, q-alg/9709040.
- M. Dütch and K. Fredenhagen, hep-th/9807215, hep-th/0101079.
- M. Bordemann, H.C. Herbig and S. Waldmann, Comm. Math. Phys. 210, 107 (2000).
- A. S. Cattaneo and G. Felder, Comm. Math. Phys. 212, 591 (2000).
- H. Garcia-Compean, J.F. Plebanski, M. Przanowski and F.J. Turrubiates, Int. J. Mod. Phys. A 16, 2533 (2001).
- A. C. Hirshfeld and P. Henselder, Ann. Phys. 298, 382 (2002).
- F. Antonsen, gr-qc/9712012.
- H. Garcia-Compean, J.F. Plebanski, M. Przanowski and F.J. Turrubiates, J. Phys. A 33, 7935 (2000).
- D. Minic, hep-th/9909022.
- F. Antonsen, gr-qc/9710021.
- R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
- C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman Ed., San Francisco, 1973).
- D. M. Gitman and I. V. Tyutin, Quantization of fields with constraints (Springer-Verlag, Berlin, 1990).
- N. N. Bogoliubov and D. V. Shirkov, Quantum fields (Benjamin Ed., USA, 1983)